Research Article
Volume 3 Issue 6
Shahenda Magdy*, Mahmoud Bahaa and Alia ElBolock
November 23, 2023
Abstract
Federated learning (FL) is a distributed machine learning technique that enables remote devices to share their local models without sharing their data. While this system benefits security, it still has many vulnerabilities. In this work, we propose a new aggregation system that mitigates some of these vulnerabilities. Our aggregation framework is based on: Connecting with each client individually, calculating clients’ model changes that will affect the global model, and finally preventing aggregation of any client model until the accepted range of distances with other clients is calculated and the range of this client is within it. This approach aims to mitigate against Causative, Byzantine, and Membership Inference attacks. It has achieved an accuracy of over 90 percent for detecting malicious agents and removing them.
Keywords: Federated Learning; Security; Step - wise Model Aggregation
References