

Autologous Cytokine-based Monoclonal Therapy

Type: Conceptual Paper

Received: December 19, 2025

Published: January 07, 2026

Citation:

Samorindo Peci. "Autologous Cytokine-based Monoclonal Therapy". PriMera Scientific Medicine and Public Health 8.2 (2026): 01-03.

Copyright:

© 2026 Samorindo Peci. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Samorindo Peci*

Ce.Ri.Fo.S, Milan, Italy

*Corresponding Author: Samorindo Peci, Ce.Ri.Fo.S, Via G. Paisiello 24, Milan, Italy.

Abstract

Chronic inflammatory and immune-mediated conditions are frequently characterized by a persistent imbalance between pro-inflammatory cytokines and regulatory immune pathways, often refractory to conventional targeted therapies. While monoclonal antibody treatments offer highly specific molecular inhibition, their single-target approach may not adequately address the complexity of dysregulated cytokine networks. This editorial discusses the biological rationale and emerging clinical evidence supporting autologous cytokine-based monoclonal therapies as a systemic immunoregulatory strategy. Drawing on over a decade of clinical experience and published case series, the modulation of endogenous cytokine profiles—particularly through regulatory mediators such as interleukin-10 (IL-10)—is examined as a means of restoring immune homeostasis rather than inducing unidirectional suppression. The relevance of this approach is explored in chronic inflammatory, autoimmune, and post-oncological immune-dysregulation settings, where conventional therapies may fail to provide sustained clinical benefit. By leveraging patient-derived immunoregulatory mechanisms, autologous cytokine-based monoclonal therapies represent a biologically coherent and potentially cost-effective adjunct or alternative to existing immunomodulatory strategies, warranting further scientific discussion and systematic investigation.

Keywords: Autologous cytokine therapy; Immunoregulation; Cytokine network modulation Interleukin-10 (IL-10); Chronic inflammatory diseases

Abbreviations

IL-10: Interleukin-10.

IL-6: Interleukin-6.

IL-1 β : Interleukin-1 beta.

TNF- α : Tumor necrosis factor alpha.

Dear Editor,

I would like to draw the attention of the scientific community to a series of considerations arising from more than a decade of research and clinical observation on autologous cytokine-based monoclonal therapies, a field I have been investigating since 2009. The aim of this communication is to highlight how the modulation of cytokine networks through autologous preparations represents a

valuable therapeutic strategy in inflammatory and immune-mediated conditions, and how preliminary evidence suggests a regulatory effect primarily mediated by IL-10 and other compensatory cytokines [1-4].

The clinical rationale underlying these therapies stems from the observation that many patients with chronic inflammatory or immune-mediated disorders exhibit a persistent imbalance between pro-inflammatory factors (such as TNF- α , IL-6, and IL-1 β) and regulatory or anti-inflammatory mediators. This imbalance often persists despite standard treatments, including targeted monoclonal antibody therapies. As documented in the literature, monoclonal therapies exert highly specific blockade of individual molecules; however, such specificity may fail to fully address the complexity of a dysregulated immune network [5-7].

In contrast, autologous cytokine-based monoclonal modulation is grounded in a systemic biological principle. Cytokine fragments obtained from the patient are incubated under controlled conditions to induce a physiological release of both regulatory and pro-homeostatic cytokines. The resulting preparation preserves the intrinsic immunological coherence of the immune system and, when re-administered, promotes a rebalancing effect rather than a unidirectional inhibition [1-4].

This approach is particularly relevant in clinical scenarios in which conventional therapies fail to provide adequate improvement or where inflammatory dysregulation persists despite standard care. By acting on the cytokine network as a whole rather than on a single molecular target, autologous cytokine-based monoclonal therapy offers the opportunity to access immunoregulatory layers that are not reachable through traditional pharmacological strategies. This expands the therapeutic options for patients who remain symptomatic or refractory, introducing a biologically coherent modality that harnesses the patient's endogenous regulatory potential.

In my clinical practice and in documented case series, I have observed that patients with chronic inflammation, autoimmune conditions, and post-oncological immune imbalance derive benefit from such interventions [1, 3]. IL-10 is widely recognized as a pivotal mediator of immune regulation, capable of limiting excessive effector responses while preserving tissue homeostasis. The central role of IL-10 in the regulation of inflammation has been consistently reported in the experimental immunology literature [8-10].

An additional area of clinical interest concerns patients who, following intensive oncological treatments, present with residual immune dysregulation. In these cases, the administration of autologous cytokine-based monoclonal preparations has been shown to restore immune balance, as recently reported in my case-based publication involving oncological patients treated with autologous monoclonal cytokine therapy [1]. Comparable outcomes have also been observed in autoimmune contexts, such as rheumatoid arthritis, where autologous biological therapy demonstrated selective modulation of inflammatory markers accompanied by clinical improvement [4].

The technique employed involves a standardized blood draw followed by a controlled cytokine extraction process based on defined thermal and temporal parameters (patented procedure). The resulting preparation contains a physiologically modulated cytokine profile. As the product is autologous, the safety profile is favorable and devoid of risks associated with heterologous proteins or monoclonal-related adverse events.

Recent advances in immunology support the concept that immunoregulation is more effective when the immune system is guided back toward its intrinsic equilibrium rather than forcibly suppressed [6, 7]. This concept aligns with the theoretical framework underpinning autologous cytokine-based monoclonal therapies and provides a strong rationale for continued investigation in this field.

In light of these considerations, and taking into account both the clinical observations reported in my published work and the supporting scientific literature, I firmly believe that autologous cytokine-based monoclonal therapies warrant broader discussion and investigation within the scientific community. Their potential applicability across a range of inflammatory and immune-mediated conditions underscores the importance of exploring strategies that leverage endogenously derived immunoregulatory pathways and of expanding therapeutic options for patients who do not achieve sufficient benefit from conventional treatments. It is also evident that this approach is of particular interest to hospital-based institutions, as the extraction technique can be developed within hospital laboratories without the need for externalization, thereby reducing production and management costs when compared with currently

available monoclonal therapies.

To further substantiate this innovative approach, a comprehensive data analysis involving 1,140 patients treated over the past 15 years of my medical career will be published in the near future.

Conflict of interest

The author declares that there are no conflicts of interest related to the content of this editorial.

References

1. Samorindo Peci., et al. "Autologous Cytokine Therapy and IL-10 Recovery in Cancer Patients: A Case Series on Immunoregulatory Restoration After Conventional Treatments". Scholastic Medical Sciences 3.1 (2026): 01-05.
2. Peci S., et al. "Immune Response Variation in Administration of IgG Lysates". EC Microbiology 17.3 (2021): 21-37.
3. Peci S, Peci F and Pica R. "Autologous Cytokine Fragments for Targeted Modulation of the Immune Response: Two Clinical Case Reports". PriMera Scientific Medicine and Public Health 7.5 (2025a): 3-11.
4. Peci S, Peci F and Pica R. "Targeting the Cytokine Network with Autologous Biological Therapy: Case-Based Evidence of Immune Modulation in Rheumatoid Arthritis". EC Microbiology 21.11 (2025b): 1-12.
5. Titov Aleksei., et al. "The biological basis and clinical symptoms of CAR-T therapy-associated toxicites". Cell death & disease 9.9 (2018): 897.
6. O'Shea, John J and Peter J Murray. "Cytokine signaling modules in inflammatory responses". Immunity 28.4 (2008): 477-487.
7. Schett Georg and Markus F Neurath. "Resolution of chronic inflammatory disease: universal and tissue-specific concepts". Nature communications 9.1 (2018): 3261.
8. Saraiva Margarida and Anne O'garra. "The regulation of IL-10 production by immune cells". Nature reviews immunology 10.3 (2010): 170-181.
9. Couper Kevin N., et al. "IL-10: the master regulator of immunity to infection". The Journal of Immunology 180.9 (2008): 5771-5777.
10. Iyer Shankar Subramanian and Gehong Cheng. "Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease". Critical Reviews™ in Immunology 32.1 (2012): 23-63.