

Customer Insights on AI-Agent-Based Facade Technologies: An Examination of Quality, Design, and Functional Expectations

Type: Research Article

Received: November 19, 2025

Published: January 05, 2026

Citation:

K Rajaprabakaran., et al. "Customer Insights on AI-Agent-Based Facade Technologies: An Examination of Quality, Design, and Functional Expectations". PriMera Scientific Engineering 8.1 (2026): 53-63.

Copyright:

© 2026 K Rajaprabakaran., et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

K Rajaprabakaran^{1*} and A Geetha²

¹*Research Scholar, Management Studies, Bharath Institute of Higher Education and Research, Chennai, India*

²*Associate Professor & Head, Business Administration, Bharath Institute of Higher Education and Research, Chennai, India*

***Corresponding Author:** K Rajaprabakaran, Research Scholar, Management Studies, Bharath Institute of Higher Education and Research, Chennai, India.

Abstract

As artificial intelligence continues to reshape architectural practice, one area seeing notable change is building façades. These once-static elements are now being reimagined as smart, adaptive systems capable of responding to both environmental conditions and user needs. This study explores how users in Chennai, across both residential and commercial contexts, perceive AI-agent-based façade technologies. By conducting a structured survey, the research examines how people evaluate these systems in terms of quality, visual appeal, and functionality. The findings suggest a growing openness toward responsive façades, especially those that combine energy efficiency with aesthetic adaptability. However, users also raised valid concerns, chief among them, maintenance demands and long-term costs. These insights reveal a gap between technological potential and everyday practicality, offering valuable direction for architects, product developers, and urban planners aiming to align smart design with user priorities.

Keywords: smart façades; artificial intelligence in architecture; user perceptions; adaptive building systems; design and functionality; energy-efficient urban design; Chennai property users; intelligent building envelopes; human-centered innovation; architectural technology adoption

Introduction

Background and Context

Architectural design has never stood still. As cities grow denser and environmental pressures mount, the role of building façades has evolved. Once seen as static barriers, today's façades are expected to do more, responding to sunlight, regulating temperature, and adapting to human comfort in real time.

Recent years have seen a rise in ***AI-enabled façades***, which use embedded sensors and smart systems to monitor environmental conditions and make adjustments automatically. These systems are more than just a trend. They're a sign of a deeper shift in how buildings interact with people.

Take a city like Chennai, where climate sensitivity is a constant concern. A façade that adjusts itself during peak sun hours or changes airflow based on humidity isn't just helpful—it's transformative. And yet, one has to ask: How do the people who live and work behind these façades feel about them?

This study takes that question seriously.

Research Problem

Technical innovation often moves faster than user acceptance. While there's a growing body of work around the mechanical and environmental performance of AI-based façades, much less is known about how users respond to them emotionally or practically.

Especially in hybrid urban settings where modern high-rises stand beside traditional architecture, new technologies can clash with established aesthetic and cultural expectations. It's not just about whether smart façades work; it's also about whether people are ready to trust them.

This research steps into that gap.

Objectives of the Study

This study sets out to:

- Gauge how users evaluate the ***quality and dependability*** of AI-driven façade systems.
- Explore ***design preferences*** and whether these align with what intelligent façades look and feel like.
- Understand the ***functional benefits and limitations*** as perceived by users.
- Identify ***key obstacles***, including trust, usability, cost, and awareness, that prevent wider adoption.

Scope and Significance

The study focuses on high-end residential and commercial buildings within an urban Indian context. These are the environments most likely to experiment with next-generation building systems like smart façades.

By gathering perspectives from a mix of users, architects, residents, developers, and consultants, this research offers real-world insights that can inform both product development and architectural design strategy.

Structure of the Paper

The remainder of the paper is divided into six parts.

It begins with a literature review that outlines the current state of façade technologies and user perception studies. This is followed by a discussion of theoretical gaps, then a breakdown of the research methodology. The next section presents the data collected, which is then analyzed and discussed. Finally, the study concludes with practical recommendations and ideas for future inquiry.

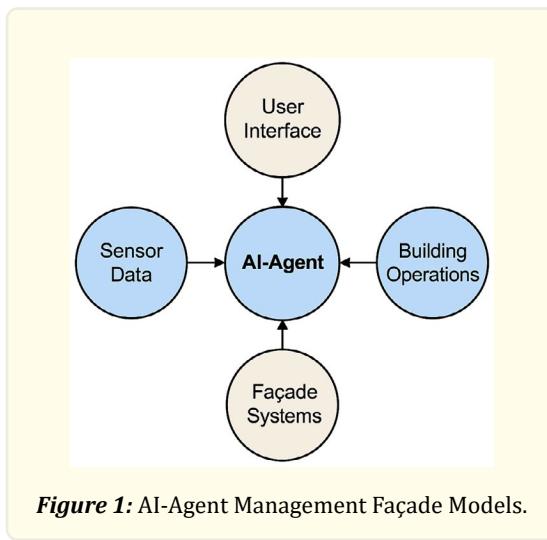
Literature Review

Overview of Façade Technologies in Modern Architecture

Over the last few decades, building façades have gone through a quiet but powerful transformation. Once viewed mostly as an outer shell, something to keep out the elements and give a building its look, they are now expected to play an active role in energy efficiency and interior comfort.

Modern façade systems are layered, sometimes even kinetic, and designed to respond to environmental inputs. Technologies such as double-skin façades, ventilated panels, and electrochromic glass are now part of the architectural vocabulary. They're not just about looks anymore; they're about performance.

In climates like India's, where managing solar gain and airflow is critical, the façade often carries the burden of balancing comfort and energy use. A poorly performing façade means higher cooling costs and a less pleasant indoor experience. No wonder architects and engineers are exploring ways to make façades more intelligent and more responsive.


Role of AI-Agent-Based Systems in Building Design

AI, which has already reshaped fields from medicine to marketing, is starting to change how we design and operate buildings, too. In the case of façades, the shift is subtle but significant.

Rather than leaving decisions to users like when to open a window or adjust a shade, AI-agent-based systems can do this automatically. They pull in data from weather forecasts, occupancy patterns, and temperature sensors to decide what action to take. And unlike pre-programmed systems, they don't just follow fixed rules; they can learn and adapt over time.

Think of it as a living façade. One that knows when to let light in or keep heat out. One that learns your preferences and adjusts accordingly. It's a huge leap forward from traditional, fixed-function skins.

Yet here's the catch: much of the literature so far has focused on how these systems work, not how they're experienced. We know a lot about their potential to reduce energy use, but not enough about whether people like using them, or even feel comfortable with them in the first place.

Figure 1: AI-Agent Management Façade Models.

Customer Perception Studies in Smart Architectural Elements

Technology, no matter how clever, only succeeds when people want to use it. That's especially true in architecture, where form and feeling matter just as much as function.

Studies on smart homes and automated lighting show that user adoption often hinges on soft factors: How intuitive is the system? Does it respect user preferences? Does it feel invasive or empowering? These questions matter a lot when you're dealing with technology that blends into everyday environments.

Now, with façades, the stakes are even higher. Unlike HVAC systems or sensors tucked behind walls, façades are on display. They define how a building looks and feels. A smart façade that looks too mechanical or out of place could easily turn people off, even if it performs flawlessly.

So far, there's been a surprising lack of focused research on this. Customer perception studies have mostly lumped façades in with general smart building features, treating them as part of a larger ecosystem. But façades are unique. They have their own role in the visual, functional, and emotional identity of a building.

In regions like Chennai, where local climate, cultural values, and aesthetic expectations collide, the need for perception-focused research becomes even more critical. Users here might appreciate innovation, but they still expect it to feel familiar, manageable, and visually integrated. That balance hasn't been well documented in existing literature, and it's what this study aims to address.

Research Gap and Theoretical Framework

Identified Research Gaps in Current Literature

It's not hard to find studies on AI in architecture these days. A quick search turns up papers on energy modeling, automation algorithms, and smart building materials. What's harder to find is research that looks beyond the numbers and digs into how people experience these technologies, especially when it comes to façade systems.

A lot of the focus in current literature is technical. Researchers are exploring how intelligent façades perform in simulations: how much sunlight they block, how well they regulate temperature, and how much energy they save. But rarely do these studies ask how actual users respond to these systems in practice. Do people find them useful? Confusing? Visually disruptive?

Even when user perspectives are mentioned, they're usually part of broader studies on smart buildings. The façade, in these cases, gets treated like just another subsystem. But it's not. It's a prominent visual and functional feature of any building, something people see and interact with daily. It deserves its spotlight.

There's also a geographical gap worth mentioning. Most research comes from technologically advanced markets in the West or East Asia. These studies may not fully capture the realities of places like Chennai, where climate pressures, cost sensitivities, and design traditions create a very different landscape.

All of these points point to a missing piece in the literature: a user-focused, context-aware study of AI-enabled façades that accounts for how people perceive, accept, and evaluate them.

Justification for the Current Study

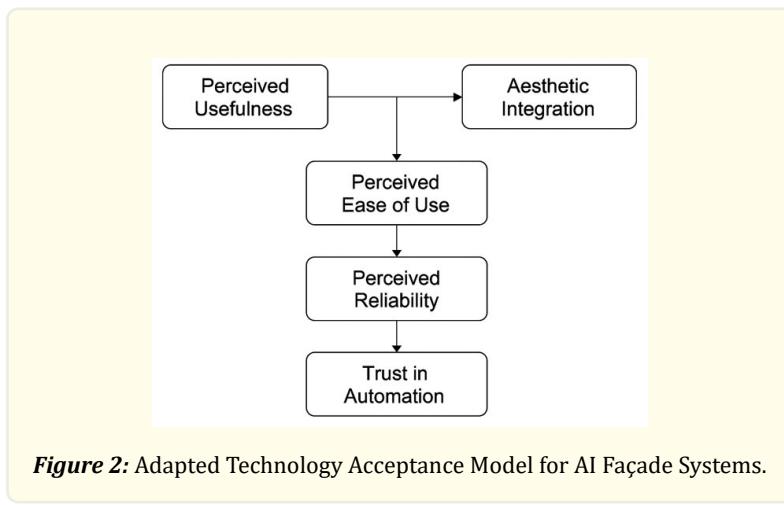
This research steps in to fill that gap. Its goal isn't to prove how smart façades can reduce kilowatt-hours—others have done that already. Instead, it asks: What do users think of these systems? Do they find them appealing or intimidating? How do aesthetics, trust, and usability factor into their willingness to adopt?

By focusing on stakeholders in a city like Chennai, where tradition and modernity often meet in the same street, this study offers something different. It looks at how cultural context, environmental demands, and user expectations intersect when it comes to next-generation façade design.

In doing so, the research doesn't just complement existing technical studies; it adds a human layer to the discussion, one that's essential if these technologies are going to gain broader acceptance.

Conceptual/Theoretical Framework

To guide this exploration, the study draws on a well-established model from the tech adoption world: the ***Technology Acceptance Model (TAM)***. Developed to understand how people decide whether to adopt new technologies, TAM focuses on two core beliefs:


- **Perceived Usefulness** - the belief that the technology will improve comfort, performance, or convenience.
- **Perceived Ease of Use** - the idea that the system should be intuitive and not require much effort to operate.

But architecture isn't like using a mobile app or online tool. In this context, we need to expand the model to reflect design-related concerns and trust-based decisions that users make, often unconsciously.

So, this study extends the TAM with a few additions:

- **Perceived Aesthetic Fit**: Does the façade design match the building's visual character and appeal to the user's taste?
- **Perceived Reliability**: Can users count on the system to function consistently and predictably, especially in demanding environments?
- **Trust in Autonomy**: Are users comfortable handing over control to an automated system, particularly for something as visible and influential as the building's skin?
- **Intention to Adopt**: Would users recommend or invest in such systems, given what they know and feel?

These expanded variables form the backbone of the study's analysis. Together, they allow us to not only measure opinions, but to interpret the deeper drivers behind them—what makes a person say “yes” or “no” to a technology they may not fully understand, but still need to live with.

Figure 2: Adapted Technology Acceptance Model for AI Façade Systems.

Methodology

Research Design

To understand how users engage with AI-powered façades, a single method wasn't going to cut it. This study used a **mixed-methods design**, not just for completeness, but because it offered balance. Surveys gave us the numbers; interviews gave us the stories.

This dual approach made it easier to identify patterns while still hearing the individual voices behind those patterns. In other words, the study wasn't just interested in what people think—it also cared about why they think that.

Study Area and Population

The study focused on an urban Indian environment where smart buildings are gradually becoming part of the design conversation. It targeted people involved with commercial or high-end residential projects—spaces where AI-enhanced façades are more likely to be introduced, tested, or at least considered.

Participants included:

- **Building occupants**, who could speak to comfort and daily experience.
- **Architects and designers**, with a front-row view of innovation and integration.
- **Developers**, whose decisions influence whether these systems are even considered.
- **Consultants and engineers**, responsible for making the tech side work.

What mattered most was diversity. The goal wasn't to get a group of tech enthusiasts; it was to get a range of voices, from curious users to skeptical professionals.

Data Collection Methods

The data came in two waves:

1. A structured **survey**, which was distributed both online and in person, especially during professional events and architectural forums.
2. A set of **semi-structured interviews**, used to dive deeper into opinions and experiences that surveys can't always capture.

The survey collected responses from **218 individuals**. From that pool, **22 participants** were invited for one-on-one interviews. Some had experience with smart façades; others had simply encountered the idea in design meetings or presentations. Their perspectives were valuable either way.

Interviews were held in person or over video calls, depending on availability. Each conversation lasted between **25 and 40 minutes**, and all participants were briefed on the study's purpose and gave informed consent.

Survey Instrument and Validation

The survey itself was designed with care. It had four sections:

Section	Focus
A	Demographics and professional background
B	Awareness of AI-based façade technologies
C	Perceptions related to design, functionality, quality
D	Adoption intent and perceived barriers

A mix of **Likert-scale questions** and **open-ended prompts** allowed participants to rate their views and explain them when needed. The tone was neutral, with an aim to guide, not influence responses.

Before going live, the survey was reviewed by three professionals: a senior architect, a real estate developer, and a smart building specialist. Their feedback helped polish the language and flag any confusing items. A **pilot test** with 15 respondents confirmed that the flow and clarity were solid. The final version showed a **Cronbach's alpha of 0.87**, suggesting strong internal consistency.

Data Analysis Techniques

Once the data came in, the analysis unfolded in two streams:

Quantitative analysis, handled via **SPSS**, focused on:

- Descriptive statistics to summarize overall sentiment.
- Cross-tabs to compare responses across user types.
- Correlation analysis to see what kinds of perceptions predicted adoption intent.

Qualitative analysis followed a thematic coding approach. Transcripts were reviewed and tagged based on emerging topics: aesthetic fit, ease of use, doubts about automation, and more. These themes weren't just sorted; they were cross-checked with the **conceptual framework** (TAM and its extensions), which gave the analysis depth and structure.

In the end, what mattered was not just what users said, but how those insights aligned or conflicted with the logic driving smart façade adoption today.

Results and Discussion

Demographic Profile of Respondents

A total of **218 respondents** took part in the survey. The participant pool included a diverse mix of stakeholders relevant to the topic.

- **Occupants** accounted for roughly 41% of the total,
- **Architects and designers** made up 29%,
- **Developers and property managers** represented about 18%,
- And the rest were **consultants and engineers** with technical insight.

In terms of age distribution, 35% were between 25 and 34 years, 43% between 35 and 50, and the remaining 22% were above 50. Educational backgrounds skewed toward the upper end, with 77% holding a bachelor's degree or higher. Notably, about 61% were aware of smart façade systems, although only a smaller segment, just under a quarter, had direct experience interacting with them in a real project setting.

This blend of respondents helped create a well-rounded picture: from first-time users still forming their opinions to seasoned professionals who've seen these systems in action.

Perceptions of Quality in AI-Based Façade Systems

When asked whether they believed AI-agent façades offered superior quality compared to conventional systems, most respondents leaned positively. About **68% agreed or strongly agreed** that these systems appeared high-quality in concept and execution.

Several themes stood out:

- **Automation accuracy** was praised by many, especially those familiar with real-time shading and thermal control systems.
- **Energy efficiency potential** was recognized as a key motivator.
- **Perceived modernity** of the systems was seen as a value-add, particularly in premium properties.

That said, caution surfaced, too. Around **36% of respondents voiced concern** about how these systems would fare in challenging conditions (e.g., heavy rains, salt-laden air, or prolonged humidity). Others brought up **maintenance complexity**, wondering who would handle repairs or calibrations once the building was handed over.

One developer noted: "We can't roll out a tech that looks good on paper but becomes a headache in three years."

So, while the idea of quality was strong, it was often tempered by worries about long-term durability and technical support.

Design Preferences and Aesthetic Expectations

If quality was appreciated, **aesthetics were non-negotiable**. An overwhelming **81% of participants said design compatibility was crucial** to their acceptance of smart façades.

Design priorities included:

- **Sleek, modular looks** that fit into both modern and transitional buildings.
- The ability to **customize the finish, color, or texture**.
- Integration with **existing architectural language** rather than standing out as “techy” or mechanical.

Interestingly, some users expressed a desire for **subtlety**. They preferred that smart systems blend in, rather than draw attention to their intelligence.

An architect commented: “Let the façade be smart but don’t make it look like a robot.”

This sentiment suggests that adoption depends not just on what the system does, but how it feels visually and emotionally to those who see it daily.

Functional Performance and User Satisfaction

Among the 23% of respondents who had interacted with AI-based façades, most shared positive impressions, but with a few caveats.

Functional highlights included:

- **Responsive shading systems** that adjusted to sun angles throughout the day.
- **Automated ventilation features** that helped manage interior air quality.
- **Daylight management**, which contributed to better lighting without glare.

However, limitations were also flagged:

- A few users found that the systems didn’t always respond as quickly as expected, especially during abrupt weather changes.
- **Manual override options were limited or hard to use**, frustrating some occupants who wanted more control.
- **User interfaces** were mentioned repeatedly as needing simplification.

Despite these challenges, **62% of users rated their satisfaction as high**, while 28% gave a moderate rating, and only 10% were dissatisfied.

This mixed feedback underscores the potential of the technology, but also suggests that a better focus on **user experience and interface design** could increase satisfaction.

Challenges and Barriers to Adoption

Participants were asked what factors would discourage them from adopting AI-powered façades in future projects. The responses clustered around five main themes:

Cost wasn’t just about purchase price. Respondents worried about **long-term maintenance budgets**, particularly in buildings with limited operational staff.

Another key concern was **control**. Even among tech-forward participants, several said they were uneasy about giving up manual input entirely.

Barrier	% of Respondents
High Initial Cost	67%
Lack of Public Awareness	42%
Maintenance Complexity	35%
Trust in Full Automation	31%
Shortage of Skilled Technicians	28%

A building manager shared: "Autonomy is great until it does something unexpected and we can't change it quickly."

That sentiment reflects a deeper need for ***fail-safes, transparency, and manual fallback modes***, especially in regions where infrastructure reliability may vary.

Comparing Traditional and AI-Based Façades

To bring clarity to user perceptions, participants were asked to compare AI façades with more conventional systems. Here's how they stacked up:

Criterion	Conventional Façades	AI-Agent Based Façades
Initial Cost	Lower	Higher
Energy Efficiency	Average	High
Visual Flexibility	Medium	High (if customizable)
Maintenance Complexity	Low	Medium to High
Environmental Adaptivity	Fixed	Real-time, responsive
User Control	Manual	Automated
Design Innovation Appeal	Low	High

What emerged was a familiar trade-off. Conventional façades are simpler, cheaper, and trusted. AI-based options offer greater adaptability and savings, but at the cost of complexity, upfront expense, and a learning curve.

Still, most respondents agreed that the ***future of façades lies in intelligence***. The challenge is not whether to go smart, but how to make that shift accessible, trustworthy, and design-conscious.

Summary of Key Findings

This study set out to explore a deceptively simple question: how do users feel about AI-agent-based façade technologies? The answer, as it turns out, is layered.

There's genuine interest in the potential. Users appreciate the energy-saving benefits, the idea of automation, and the promise of a more comfortable indoor environment. They also recognize that smart façades represent a natural evolution in modern building design.

But at the same time, hesitation runs deep. Concerns about cost, ***maintenance, aesthetic compatibility, and loss of control*** all shape the way people respond to these systems. Even among those with technical knowledge, trust remains a fragile currency.

The bottom line is this: users are not rejecting the technology, they're just waiting for it to meet them halfway.

Implications for Developers and Architects

For developers, the key message is clear: smart façades must be seen as **value investments**, not speculative upgrades. That means offering more than just performance metrics. Demonstrations, sample integrations, and transparent cost-benefit analyses can help users feel more confident.

Architects, meanwhile, should view AI façades as **design elements first**, technology second. A system that performs well but clashes with the building's visual language won't win hearts. Design matters. Familiarity matters. And so does subtlety.

Collaboration is also key. If system developers, architects, and interface designers work together from the start, the result is more likely to resonate with users.

Limitations of the Study

Like any real-world research study, this one comes with limitations.

- The participant pool leaned toward urban professionals involved in premium projects. The views of lower-income or rural users, who may engage with smart façades in public buildings or future affordable housing, are not fully captured.
- Because adoption is still in early stages, some responses were based more on perception than prolonged experience.
- Lastly, the study was cross-sectional. It provides a snapshot, but not a long-term view of how satisfaction might change over time.

Still, the depth of insight offered here should not be discounted. The feedback was honest, practical, and highly relevant for anyone working in this space.

Suggestions for Future Research

There's plenty of room to go deeper. Future research might consider:

- **Longitudinal studies** that track user satisfaction over time and across seasons
- **Post-occupancy evaluations** of actual smart façade performance vs. initial expectations
- Comparative studies across different cities or regions, to see how climate, culture, and cost influence perception
- And finally, deeper analysis into **interface design, override systems, and training needs**, because the smartest system in the world still needs to be usable.

Closing Reflection

The real challenge with AI-agent-based façades isn't the technology, it's the translation. Turning data and algorithms into something people trust, enjoy, and rely on takes more than engineering. It takes empathy, design thinking, and a commitment to user experience.

This study is just one step in that direction. But it's a necessary one and hopefully, a useful one for those looking to build not just smarter buildings, but more human ones.

References

1. Asadi E., et al. "Multi-objective optimization for building retrofit strategies: A model and an application". *Energy and Buildings* 44 (2012): 81-87.
2. Azari R and Brown GZ. "Comparative energy performance of intelligent façades in hot and humid climates". *Journal of Building Performance* 1.1 (2010): 41-49.
3. Becerik-Gerber B and Kensek K. "Building information modeling in architecture, engineering, and construction: Emerging research directions and trends". *Journal of Professional Issues in Engineering Education and Practice* 136.3 (2010): 139-147.
4. Chien SF and Shih S. "Design automation in intelligent buildings". *Automation in Construction* 16.3 (2007): 344-351.

5. Cook DJ and Das SK. "How smart are our environments? An updated look at the state of the art". *Pervasive and Mobile Computing* 3.2 (2007): 53-73.
6. Dear R and Brager GS. "Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55". *Energy and Buildings* 34.6 (2002): 549-561.
7. Delzendeh E, et al. "The impact of occupants' behaviours on building energy analysis: A research review". *Renewable and Sustainable Energy Reviews* 80 (2017): 1061-1071.
8. GhaffarianHoseini A, Berardi U and GhaffarianHoseini A. "What drives the green building movement?". *Sustainable Cities and Society* 17 (2015): 20-30.
9. Hay R and Ostwald MJ. "Understanding adaptive architecture: A review". *International Journal of Architectural Computing* 11.2 (2013): 139-158.
10. Janda KB. "Buildings don't use energy: People do". *Architectural Science Review* 54.1 (2011): 15-22.
11. Kim J and Clayton MJ. "The effects of virtual building environments on occupant comfort and productivity". *Building and Environment* 56 (2012): 38-47.
12. Kolokotsa D and Santamouris M. "Review of the indoor environmental quality and energy consumption studies for educational buildings". *Energy and Buildings* 94 (2015): 10-32.
13. Kwon J, Kim Y and Jeong J. "Application of smart façade systems for improving building energy efficiency and indoor comfort: A review". *Renewable and Sustainable Energy Reviews* 113 (2019): 109234.
14. Lee ES and Selkowitz SE. "The New York Times Headquarters daylighting mockup: Performance of the daylighting control system". *Energy and Buildings* 38.7 (2006): 914-929.
15. Mahdavinejad MJ and Asadi I. "Post-occupancy evaluation of smart building performance based on users' satisfaction and environmental comfort". *Journal of Building Engineering* 43 (2021): 102569.
16. Marengo M and Pagani R. "AI-based building envelopes: A new frontier for sustainability". *Journal of Sustainable Architecture and Civil Engineering* 23.2 (2018): 15-25.
17. O'Brien W, Gunay HB and Shi Z. "Human-centric intelligent buildings: Recent advances and research challenges". *Building and Environment* 182 (2020): 107101.
18. Pérez-Lombard L, Ortiz J and Pout C. "A review of buildings' energy consumption information". *Energy and Buildings* 40.3 (2008): 394-398.
19. Salama AM and Gorgulu S. "AI in the built environment: Potentials and limitations". *Architecture and Urbanism* 2.1 (2019): 21-32.
20. Wang L, Gwilliam J and Jones P. "Case study of zero-energy house design in the UK". *Energy and Buildings* 41.11 (2009): 1215-1222.