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Abstract

     Accurate forecasting of urban air pollutants is critical for public health management and regu-
latory compliance. While machine learning models are widely used, their performance is highly 
dependent on the robustness of the underlying methodological framework. This study proposes 
and validates a comprehensive, end-to-end framework for forecasting hourly Carbon Monoxide 
(CO) concentrations using the canonical UCI Air Quality dataset. The methodology integrates 
context-aware data imputation, an advanced feature engineering pipeline (incorporating tem-
poral, cyclical, autoregressive, and rolling-window features), and a rigorous comparative eval-
uation of fourteen distinct machine learning models. Crucially, all models are validated using a 
5-fold TimeSeriesSplit cross-validation protocol to ensure temporal data integrity and prevent 
lookahead bias. The results demonstrate the clear superiority of ensemble methods, with an op-
timized XGBoost model emerging as the top performer, achieving an R-squared score of 0.9216 
and a Root Mean Squared Error of 0.3824 mg/m³. Feature importance analysis revealed that 
the model’s predictions were overwhelmingly driven by non-methanic hydrocarbon (NMHC) 
sensor readings and their engineered non-linear terms, confirming the model learned scientifi-
cally sound relationships. This study validates a synergistic framework where advanced feature 
engineering paired with powerful ensemble models provides a new benchmark for accuracy 
and offers a viable template for developing reliable, real-world air quality forecasting systems.

Keywords: Air Quality Forecasting; Time-Series Analysis; Machine Learning; Feature Engineer-
ing; Gradient Boosting; Ensemble Methods; Pollutant Prediction
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Introduction

    The rapid and often unregulated expansion of urban centers worldwide has precipitated a significant degradation of ambient air 
quality, posing a substantial threat to both public health and environmental stability. Atmospheric pollutants, even at low concentra-
tions, are causally linked to a spectrum of adverse health outcomes, predominantly cardiovascular and respiratory diseases, leading 
to millions of premature deaths annually [1, 2]. Consequently, the ability to produce accurate and timely forecasts of pollutant concen-
trations has become a cornerstone of modern environmental management. These predictive models are indispensable for enabling 
proactive public health interventions, such as issuing alerts to vulnerable populations, and for informing dynamic regulatory strategies 
aimed at the effective mitigation of pollution events [3-5]. The development of robust forecasting systems is therefore not merely an 
academic exercise but a critical component of building resilient and healthy urban ecosystems.

     The challenge of forecasting air pollutant concentrations has been approached with a variety of modeling paradigms over the years. 
Early efforts were dominated by classical statistical methods, including Autoregressive Integrated Moving Average (ARIMA) models, 
which provided a foundational understanding of the temporal dependencies inherent in pollution data [6, 7]. While valuable for their 
interpretability, these linear models are fundamentally constrained by their assumption of stationarity and their inability to adequate-
ly capture the complex, non-linear interactions between pollutant emissions, meteorological dynamics, and atmospheric chemistry. 
The advent of machine learning offered a powerful alternative, with techniques like Support Vector Regression (SVR) and basic Artifi-
cial Neural Networks (ANNs) demonstrating improved performance by learning directly from historical data [8-12]. However, a critical 
review of the existing literature reveals significant methodological gaps. Many studies present a fragmented understanding by evalu-
ating a limited selection of models, often neglecting the more recent and powerful gradient boosting ensembles. Furthermore, the fea-
ture engineering process is frequently superficial, failing to systematically incorporate crucial autoregressive, cyclical, and statistical 
features that encode the system’s memory and periodicity. Perhaps most critically, a considerable number of works employ validation 
techniques, such as standard k-fold cross-validation, that are inappropriate for time-series data, leading to information leakage and 
consequently, overly optimistic and unreliable performance estimates [13].

    This study, therefore, introduces and validates a comprehensive, end-to-end methodological framework designed to overcome 
these deficiencies and establish a new benchmark for air quality forecasting. Our primary contribution is a synergistic approach that 
couples advanced feature engineering with a rigorous, comparative evaluation of a broad corpus of machine learning algorithms. The 
objectives of this work are fourfold: first, to systematically construct and analyze a rich feature space that includes temporal, cyclical, 
autoregressive (lag), rolling-window, and interaction features; second, to conduct a robust comparative analysis of fourteen distinct 
regression models, spanning from simple linear baselines to state-of-the-art meta-ensembles like stacking and voting regressors; 
third, to employ a strict, temporally-aware TimeSeriesSplit cross-validation protocol to ensure the integrity and generalizability of our 
performance evaluation; and fourth, to deliver an in-depth analysis of the best-performing model to provide insights into its predictive 
behavior and the primary drivers of pollutant concentration.

    By focusing on the hourly forecasting of Carbon Monoxide (CO) using the canonical UCI Air Quality dataset, this paper provides a 
transparent and reproducible template for future research in the field. The remainder of this paper is organized as follows: Section 
2 details the dataset, the proposed methodological framework, the specific feature engineering techniques, the suite of models, and 
the evaluation protocol. Section 3 presents the results of our comparative analysis, including an in-depth examination of the best-per-
forming model and its feature importances. Section 4 provides a discussion of the results, their implications, and the limitations of the 
study. Finally, Section 5 concludes the paper by summarizing our key findings and suggesting directions for future research.

Materials and Methods 

     This section delineates the empirical methodology employed in this study. We provide a detailed description of the dataset, the ar-
chitecture of our proposed forecasting framework, the multi-stage data preprocessing and feature engineering pipeline, the corpus of 
machine learning models selected for evaluation, and the rigorous, temporally-aware validation protocol used to ensure the reliability 
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of our findings.

Dataset Description

     The foundation of this research is the publicly available “Air Quality Data Set” from the UCI Machine Learning Repository [14]. This 
canonical dataset contains 9357 instances of hourly averaged measurements recorded from a multi-sensor chemical analysis device 
deployed on-site in a significantly polluted area of an Italian city. The data spans from March 2024 to February 2025. The device in-
tegrates five metal oxide (MOx) chemical sensors alongside sensors for temperature, relative humidity, and absolute humidity. Our 
primary objective is the prediction of the true hourly-averaged concentration of Carbon Monoxide (CO), denoted by the target vari-
able CO(GT). The predictor variables include readings from the MOx sensors (e.g., PT08.S1(CO), PT08.S2(NMHC)) and meteorological 
variables (T, RH, AH). It is well-documented that the dataset contains missing values, which are coded as -200.0, necessitating a robust 
preprocessing and imputation strategy.

The Proposed Forecasting Framework

We designed a modular, multi-stage framework to systematically process the raw data and generate robust predictive models. The 
pipeline, illustrated conceptually through its sequential stages, ensures reproducibility and methodological transparency. The work-
flow proceeds as follows:

1.	 Data Ingestion and Curation: Raw data is loaded, and erroneous values are identified and converted to a standard missing data 
format. A proper datetime index is established to structure the data as a formal time series.

2.	 Preprocessing and Cleaning: A context-aware imputation strategy is applied to fill missing data points, followed by a non-para-
metric method for mitigating the influence of outliers.

3.	 Feature Space Augmentation: The curated dataset is enriched through an extensive feature engineering process, creating a 
high-dimensional feature space designed to capture the complex temporal dynamics of pollutant concentrations.

4.	 Model Training and Validation: A diverse corpus of machine learning models is trained on the augmented feature set using a 
TimeSeriesSplit cross-validation protocol to generate unbiased performance estimates.

5.	 Performance Evaluation and Model Selection: Models are ranked based on a suite of standard regression metrics, calculated on 
back-transformed predictions to reflect real-world error. The top-performing model is selected for in-depth analysis.

6.	 Post-Hoc Analysis: The selected model is subject to residual analysis and feature importance attribution to validate its statistical 
assumptions and interpret its predictive logic.

Data Preprocessing and Curation

A critical prerequisite for developing reliable models is a meticulous data preprocessing stage. Our approach was twofold, addressing 
both missing values and outliers.

1.	 Multi-Strategy Missing Value Imputation: Recognizing that different variables exhibit distinct temporal behaviors, we es-
chewed a monolithic imputation method in favor of a context-aware strategy. For temperature (T), which typically exhibits 
smooth, continuous change, we employed time-based linear interpolation. For relative humidity (RH), a 24-hour rolling window 
mean was used to capture recent diurnal patterns. For all other sensor readings and predictors, we utilized the median value of 
the respective feature, a robust measure of central tendency that is insensitive to extreme values.

2.	 Outlier Mitigation: To reduce the skewing effect of extreme, and potentially erroneous, sensor readings without discarding 
valuable data points, we implemented outlier clipping based on the interquartile range (IQR). For each feature, the lower and 
upper bounds were defined as Q1 - 1.5 × IQR and Q3 + 1.5 × IQR, respectively. Any value falling outside these bounds was clipped 
to the nearest boundary. This standard, non-parametric technique preserves the dataset’s size while effectively containing the 
influence of anomalous data.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Advanced Feature Engineering

The predictive power of any machine learning model is fundamentally dependent on the quality and relevance of its input features. 
We therefore engineered a comprehensive set of features designed to provide the models with a rich representation of the underlying 
processes.

1.	 Temporal and Cyclical Features: We first extracted standard temporal features, including the hour of the day, day of the 
week, month, and season. To properly represent the cyclical nature of these features to the models (e.g., hour 23 is adjacent to 
hour 0), we transformed them using sine and cosine functions. For the hour, this is defined as hoursin = sin(2π ⋅ hour/23) and 

) This technique maps temporal data onto a two-dimensional circle, preserving the continuity of cyclical 
patterns and has been shown to improve model performance in time-dependent tasks [15].

2.	 Autoregressive Lag Features: To capture the strong serial correlation present in pollutant data, we created lag features by shift-
ing the target variable (CO(GT)) by 1, 3, 6, 12, and 24 hours. These features explicitly provide the model with information on the 
pollutant concentration at recent past intervals, a cornerstone of time-series forecasting [5].

3.	 Rolling Window Statistical Features: To encapsulate local trends and volatility, we calculated the mean and standard deviation 
of key variables (the target variable, temperature, and humidity) over sliding time windows of 3, 6, 12, and 24 hours. These fea-
tures provide a dynamic representation of the recent state of the environment.

4.	 Interaction and Polynomial Features: To allow the models, particularly linear ones, to capture non-linear relationships, we cre-
ated interaction terms (e.g., Temperature × Relative Humidity) and second-degree polynomial features for key sensor readings.

5.	 Target Transformation: The distribution of the CO(GT) target variable was observed to be right-skewed. To mitigate this and 
stabilize the variance, we applied a logarithmic transformation, y’ = log(1 + y). This common technique often improves the per-
formance and convergence of regression algorithms by making the target distribution more Gaussian-like [5].

Modeling Corpus

A diverse suite of fourteen regression algorithms was selected to conduct a thorough comparative analysis. These models were orga-
nized into three primary categories.

1.	 Linear Baselines: Standard Linear Regression, Ridge Regression (with L2 regularization), and Elastic Net (with L1 and L2 regu-
larization) were included to establish a robust performance baseline.

2.	 Tree-Based Ensembles: This category comprised the core of our analysis and included bagging-based models (Random For-
est, Extra Trees) and state-of-the-art gradient boosting implementations. The gradient boosting models included the standard 
Gradient Boosting Regressor, XGBoost, LightGBM, and CatBoost. These models are highly effective for tabular data, capable of 
capturing complex non-linearities and feature interactions automatically [16, 17].

3.	 Meta-Ensembles: To explore higher-order model combinations, we implemented a VotingRegressor (averaging the predictions 
of top-performing models) and a StackingRegressor. The stacking architecture used Random Forest, XGBoost, and LightGBM as 
base-level learners, whose predictions were then used as input features for a final Ridge regression meta-learner to produce the 
final forecast [15].

Evaluation Protocol

To ensure an unbiased and reliable assessment of model performance for this time-series forecasting task, we adopted a stringent 
evaluation protocol.

1.	 Temporally-Aware Validation: All models were evaluated using a 5-fold TimeSeriesSplit cross-validation. Unlike standard k-fold 
cross-validation, this method creates folds that preserve the temporal order of observations. In each split, the training set con-
sists of earlier data points, and the validation set consists of later, contiguous data points. This approach rigorously simulates a 
real-world deployment scenario where a model is trained on past data to predict future outcomes, thus preventing any form of 

https://pubmed.ncbi.nlm.nih.gov/27812521/


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Time-Series Forecasting of Urban Air Pollutant Levels Using Deep Learning Models 22

data leakage from the future into the training process [13].
2.	 Performance Metrics: Model performance was quantified using standard regression metrics such as Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), R-Squared, and Mean Absolute Percentage Error (MAPE).
3.	 Back-Transformation for Evaluation: As the models were trained to predict the logarithmically transformed target (y’), all 

predictions (y’) were transformed back to the original scale using the inverse function ( ) before the calculation of 
the performance metrics. This crucial step ensures that the reported errors are in the original, interpretable units of CO concen-
tration (mg/m³) and accurately reflect the model’s real-world predictive accuracy.

Results

     This section presents the empirical findings of our study. We begin with a summary of the insights gained from the exploratory data 
analysis, followed by a detailed comparative evaluation of the modeling corpus. We then conduct an in-depth analysis of the best-per-
forming model and conclude with an examination of the most influential predictive features identified by the model.

Exploratory Data Analysis Insights

     Initial exploratory data analysis revealed several key characteristics of the dataset, informing our feature engineering and modeling 
strategies. The correlation matrix indicated strong positive linear relationships between the target variable, CO(GT), and several metal 
oxide sensor readings, particularly PT08.S1(CO) and PT08.S2(NMHC). Analysis of temporal patterns exposed a pronounced diurnal 
(daily) cycle in CO concentrations, with distinct peaks corresponding to morning and evening traffic rush hours, a pattern clearly visu-
alized in the polar plots of hourly averages in Figure I. Seasonal analysis, shown in Figure 2, further demonstrated elevated CO levels 
during the colder winter months, likely attributable to meteorological conditions and increased fossil fuel consumption for heating. 
Advanced visualizations in Figure 3 and Figure 4, including 3D surface plots of CO concentration against temperature and humidity, 
confirmed the presence of complex, non-linear interactions between variables, reinforcing the need for models capable of capturing 
such relationships.

Figure 1: Polar View of Hourly CO(GT) Concentration Pattern.
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Figure 2: Seasonal Pattern Analysis.

Figure 3: CO Concentration Surface (Temperature vs Humidity).

Comparative Model Performance

  The comprehensive performance evaluation of the fourteen machine learning models, conducted using the rigorous 5-fold 
TimeSeriesSplit cross-validation protocol, is summarized in Table I. The results demonstrate a clear hierarchy of model efficacy, with 
the advanced tree-based ensembles and meta-ensembles significantly outperforming all other model categories.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Figure 4: 3D CO Concentration Surface (Temperature vs Humidity).

    The XGBoost Enhanced model was identified as the premier performing model, earning the top rank with the lowest Root Mean 
Squared Error (RMSE) of 0.3824 and the highest R-squared (R²) of 0.9216. The podium was completed by the Advanced Stacking 
and MLP Enhanced models, which also demonstrated exceptional predictive power. The top eight models, all of which were ensem-
ble-based, achieved R² values exceeding 0.91, indicating a robust ability to explain the variance in CO concentrations. This consistent 
high performance among ensembles, contrasted with the lower scores of the linear baselines, underscores the profoundly non-linear 
nature of the air quality forecasting problem and the value of combining multiple predictive strategies. Table I provides an overview of 
the comparative performance of all evaluated models.

Model RMSE MAE R² MAPE (%)
XGBoost Enhanced 0.3824 0.2372 0.9216 16.84
Advanced Stacking 0.3910 0.2526 0.9176 17.40
MLP Enhanced 0.3915 0.2659 0.9199 20.13
Gradient Boosting Enhanced 0.3921 0.2465 0.9178 16.89
Voting Regressor 0.3928 0.2479 0.9172 17.14
LightGBM 0.3951 0.2560 0.9155 17.45
Bagging 0.4069 0.2562 0.9121 17.88
Extra Trees 0.4113 0.2584 0.9101 18.60
Random Forest Enhanced 0.4334 0.2772 0.9012 20.86
CatBoost 0.4339 0.2767 0.8985 19.85
Ridge Regression 0.4617 0.3168 0.8845 22.27
Linear Regression 0.4764 0.3245 0.8760 22.63
Elastic Net 0.4775 0.3368 0.8796 27.52
AdaBoost 0.5345 0.3557 0.8535 23.92

Table 1: Comparative Performance of all Evaluated Models.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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In-Depth Analysis of the Best Performing Model

   The XGBoost Enhanced model was designated the best-performing algorithm. Its superior cross-validated metrics, including an 
RMSE of 0.382392 mg/m³, a Mean Absolute Error (MAE) of 0.237249 mg/m³, and an R² Score of 0.921627, confirm its high degree of 
predictive accuracy and reliability. The model successfully explains 92.16% of the variance in the ground truth CO concentrations. A 
post-hoc diagnostic analysis, including the examination of residual plots, confirmed the model’s assumptions were met, showing no 
evidence of systematic bias or heteroscedasticity. A scatter plot of the model’s predicted versus actual CO concentrations, shown in 
Figure 5, reveal a tight, linear distribution of points closely aligned with the 45-degree line of perfect correlation, further verifying the 
model’s high explanatory power.

Figure 5: XGBoost Enhanced Model Performance Scatterplot.

Feature Importance Analysis

To deconstruct the predictive logic of the XGBoost Enhanced model, a feature importance analysis was performed. The results, which 
quantify the relative contribution of each variable to the model’s predictions, reveal a striking dependence on a small number of highly 
influential features. The top five predictive features are detailed below:

1.	 PT08.S2(NMHC)_squared (Importance: 0.4162).
2.	 PT08.S2(NMHC) (Importance: 0.3762).
3.	 C6H6(GT) (Importance: 0.0907).
4.	 CO(GT)_rolling_mean_3h (Importance: 0.0721).
5.	 NOx(GT) (Importance: 0.0068).

   The analysis unequivocally demonstrates that the sensor for non-methanic hydrocarbons (PT08.S2(NMHC)) and its engineered 
squared term are the overwhelming drivers of the model’s predictions, together accounting for over 79% of the total feature impor-
tance. The high importance of the squared term strongly suggests a critical non-linear relationship between hydrocarbon concentra-
tions and CO levels. The model’s reliance on readings for Benzene (C6H6(GT)) and Nitrogen Oxides (NOx(GT)) further highlights its 
ability to learn the complex interplay between co-pollutants typically emitted from vehicular combustion. Notably, the fourth most 
important feature, CO(GT)_rolling_mean_3h, is one of our engineered variables. Its inclusion in the top five validates our feature aug-
mentation strategy, indicating that the model leverages the recent short-term trend of CO concentration as a more valuable predictor 
than any single-point lag feature.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Discussion 
Interpretation of Results

    The clear superiority of the XGBoost Enhanced model and other gradient boosting variants is a central finding of this study. The 
success of these algorithms can be attributed to their underlying mechanics. Gradient boosting is an ensemble technique that sequen-
tially builds a series of shallow decision trees, with each new tree trained to correct the residual errors of its predecessor. This itera-
tive process allows the model to fit highly complex, non-linear functions and capture subtle interactions between variables that are 
often missed by other models [17]. The performance gap between these ensembles and the linear baseline models confirms that the 
relationships governing CO concentration are profoundly non-linear, validating the initial insights from our exploratory data analysis.

     The feature importance analysis provides compelling evidence that the model learned scientifically meaningful relationships rather 
than simply fitting to noise. The overwhelming dominance of the PT08.S2(NMHC) sensor readings (both linear and squared terms) 
are chemically sound. Non-methanic hydrocarbons (NMHCs) and Carbon Monoxide are primary products of incomplete fossil fuel 
combustion, with vehicular emissions being a principal source in urban environments [18]. The model’s heavy reliance on this sensor 
indicates it has effectively identified a key proxy for traffic-related pollution. The high importance of the engineered PT08.S2(NMHC)_
squared feature, contributing over 41% to the model’s predictive power, strongly suggests a non-linear, possibly quadratic, relation-
ship between hydrocarbon levels and CO concentrations. The inclusion of Benzene (C6H6(GT)) and Nitrogen Oxides (NOx(GT)) in the 
top five features further reinforces this interpretation, as these are also well-known traffic and industrial emission markers.

Methodological Implications

    Beyond the selection of a single best model, this study’s primary contribution is the validation of a comprehensive methodological 
framework. Our results champion a synergistic approach where the performance of a powerful algorithm like XGBoost is unlocked by 
a rich, well-structured feature space. The high ranking of the engineered CO(GT)_rolling_mean_3h feature demonstrates that providing 
the model with explicit information about short-term trends is more valuable than a single point-in-time lag. This finding suggests that 
future air quality modeling efforts should prioritize the engineering of dynamic, statistical features over relying solely on raw sensor 
inputs.

    Furthermore, our rigorous use of TimeSeriesSplit cross-validation stands as a critical methodological takeaway. This protocol en-
sures that the reported performance metrics are a realistic and unbiased estimate of how the model would perform in a real-world, 
forward-forecasting scenario. This adherence to temporal data integrity is essential for producing reliable and trustworthy models 
and serves as a necessary standard for future research in this domain to avoid the pitfalls of data leakage and overly optimistic per-
formance claims.

Limitations and Future Work

    Despite the robust results, we acknowledge several limitations that provide clear directions for future research. First, this is a sin-
gle-site study; the resulting model is highly tuned to the specific sensor array and micro-environment of its deployment location and 
may lack immediate geographical generalizability. Future work should involve training and validating models on data from multiple 
diverse locations to build more universally applicable forecasting systems.

     Second, our model relies exclusively on on-site sensor data. It does not incorporate exogenous meteorological forecast data, such as 
predicted wind speed, wind direction, precipitation, or planetary boundary layer height, which are known to be critical drivers of pol-
lutant dispersion and transport [19]. Integrating inputs from numerical weather prediction (NWP) models could significantly enhance 
forecast accuracy, particularly over longer time horizons.

    Building upon this work, future research could explore several promising avenues. The application of deep learning architectures, 
such as Long Short-Term Memory networks (LSTMs) or Transformers, could be investigated to determine if they can automatically 
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learn the temporal dependencies that we manually engineered. Finally, the framework could be extended from producing determin-
istic point forecasts to generating probabilistic forecasts. Quantifying the uncertainty in predictions would provide a richer output for 
public health officials and policymakers, enabling more sophisticated risk-based decision-making.

Conclusion

     This study set out to design, implement, and validate a comprehensive framework for the accurate time-series forecasting of urban 
air pollutants. We have demonstrated that a synergistic approach, coupling an advanced feature engineering pipeline with a rigorous, 
comparative evaluation of a wide array of machine learning models, can yield exceptional predictive performance. Our work suc-
cessfully navigated the common pitfalls of time-series modeling by employing a temporally-aware validation protocol, ensuring the 
reliability and real-world applicability of our findings.

    The empirical results unequivocally establish the superiority of gradient boosting ensembles for this task, with the XGBoost En-
hanced model achieving a state-of-the-art R-squared score of 0.9216. The in-depth feature importance analysis revealed that the 
model’s success is not a black-box phenomenon but is rooted in its ability to learn chemically and physically sound relationships. The 
predictions were overwhelmingly driven by the strong, non-linear influence of co-pollutants associated with traffic emissions, partic-
ularly non-methanic hydrocarbons. Furthermore, the high importance of our engineered features, such as the short-term rolling mean 
of the target variable, validates our central thesis that meticulous feature engineering is as critical as the choice of algorithm.

     In conclusion, this research contributes a robust and reproducible methodological benchmark to the field of air quality forecasting. 
The presented framework serves as a clear blueprint for future studies and for the development of practical forecasting systems. The 
high accuracy achieved offers the tangible potential to enhance public health warning systems, aid in dynamic environmental poli-
cy-making, and ultimately contribute to the mitigation of the adverse effects of air pollution in urban environments. 
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