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Abstract

     The increasing fusion of the global economy with digital infrastructure has elevated cyber 
threats from isolated technical issues to significant drivers of financial instability. Despite this, a 
measurement gap persists, as conventional financial risk models are ill-equipped to handle the 
high-dimensional and non-linear nature of Cyber Threat Intelligence (CTI). This study bridges 
this gap by developing and validating a predictive framework that translates global CTI into 
quantitative forecasts of systemic financial risk. Using a comprehensive dataset of over 77,000 
daily cyber threat observations across 225 countries from 2015 to 2024, we forecast the U.S. St. 
Louis Fed Financial Stress Index (STLFSI). We conduct a comparative analysis of advanced deep 
learning architectures, including a Temporal Fusion Transformer (TFT), against canonical ma-
chine learning ensembles. Our results show that a gradient-boosted model (XGBoost) decisively 
outperforms other models, achieving an R² of 0.9883 and RMSE of 0.0321 on the hold-out test 
set. Employing Explainable AI (XAI) techniques, we deconstruct the model’s predictions and 
find that its success stems from capturing the complex, non-linear interaction between cyber 
threat levels and the pre-existing state of financial market stress. This research provides robust 
empirical evidence of the cyber-financial nexus, offering a novel, data-driven methodology for 
asset managers, regulators, and security leaders to proactively quantify and manage a critical 
21st-century risk.
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Introduction 
The Cyber-Financial Nexus in a Hyperconnected World

     The global economy is now inextricably intertwined with a digital substrate as organizations readily embrace digitalization, cloud-na-
tive infrastructure, and hyperconnectivity. This profound integration, while a catalyst for unprecedented efficiency and innovation, has 
concurrently given rise to a new landscape of systemic risk. The operational frameworks of modern data-driven enterprises, from 
financial institutions to critical infrastructure, are built upon layers of interconnected systems, creating a vast and complex cyberattack 
surface. Consequently, cyber threats have metamorphosed from the realm of isolated technical nuisances into potent, first-order driv-
ers of macroeconomic and financial instability. An operational disruption at a single critical node, a large-scale data exfiltration event, 
or a coordinated ransomware campaign can now propagate through the global financial system with remarkable velocity, triggering 
liquidity crises, eroding investor confidence, and ultimately threatening stability. Nation-state cyber operations targeting financial 
institutions or data custodians can propagate economic uncertainty far beyond their initial targets. This is evidenced by high-profile 
disruptions like the Solar-Winds breach [1] or the Colonial Pipeline ransomware attack [2]; both demonstrating how cyber events 
increasingly perpetuate systemic shocks rather than localized disturbances. Figure 1 illustrates this relationship between the financial 
markets and cybersecurity threats.

     This paper proceeds from the axiom that in our hyperconnected world, cyber risk is financial risk; yet the channels of this contagion 
remain dangerously under-quantified.

Figure 1: Facets of the Cyber-Financial Nexus.

The Measurement Gap in Cyber-Financial Risk

     Despite the acknowledged importance of this nexus, a significant measurement gap persists within mainstream financial risk man-
agement [3]. Extant econometric and risk models are largely ill-equipped to contend with the unique characteristics of Cyber Threat 
Intelligence (CTI). CTI data is typically of high velocity, high dimensionality, and is characterized by complex, non-linear dynamics that 
defy traditional linear modeling assumptions [4]. As a result, financial exposure to cyber events is often assessed retrospectively, based 
on damage reports following an attack, rather than proactively through forward-looking indicators. The formal problem, therefore, is 
the absence of a robust, empirically validated framework capable of ingesting high-frequency CTI and translating it into a quantitative 
forecast of financial exposure.

Research Questions and Hypotheses

This study seeks to bridge the aforementioned measurement gap by systematically investigating the predictive relationship between 
global CTI and systemic financial stress. Our inquiry is guided by three primary research questions:

https://primerascientific.com/psen
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1.	 RQ1: To what extent does a globally sourced Cyber Threat Intelligence stream possess predictive power over a national, system-
ically important financial stress index?

2.	 RQ2: What is the relative salience and dynamic importance of specific cyber threat vectors (e.g., Ransomware, Exploits) in fore-
casting financial stress?

3.	 RQ3: How do advanced deep learning architectures designed for temporal data, specifically the Temporal Fusion Transformer, 
compare in efficacy and interpretability against canonical machine learning ensembles?

    The hypotheses underlying these questions are that (1) global CTI contains leading indicators of financial instability; (2) certain 
cyber vectors, due to their disruptive nature or geopolitical targeting, are systematically more predictive of financial stress; and (3) 
advanced deep learning models, by capturing complex temporal dependencies and feature interactions, will outperform traditional 
ensembles both in accuracy and explanatory power.

Novelty and Contribution to Knowledge

This research makes several novel contributions to the literature at the intersection of finance, cybersecurity, and artificial intelligence:

1.	 Methodological: We propose and validate an end-to-end framework for forecasting systemic risk using CTI. The centerpiece of 
this framework is the application of a state-of-the-art Temporal Fusion Transformer, marking a significant step forward from the 
simpler recurrent architectures used in contemporary works.

2.	 Empirical: We provide, to our knowledge, the first robust empirical validation of using a high-frequency, global CTI dataset to 
predict the U.S. St. Louis Fed Financial Stress Index. This finding offers compelling evidence for the tangible financial contagion 
effect of global cyber events, lending support to theories of a deeply interconnected global financial market.

3.	 Interpretive: By integrating state-of-the-art Explainable AI (XAI) methods, namely SHAP and attention mechanism analysis, we 
move beyond a “black box” approach. We deconstruct our models’ predictions to provide actionable insights into which specific 
threats matter most and when they become critical, offering a new level of transparency in cyber-financial risk modeling.

     And in doing so, we aim to redefine how cyber risk is modeled, moving beyond reactive assessments to proactive, data-driven fore-
casting of systemic exposure.

Theoretical Foundations and Literature Review 

     This section situates our research within the existing scholarly landscape, drawing from distinct but intersecting domains: the eco-
nomics of cyber risk, the theory of financial contagion, and the frontier of machine learning for temporal forecasting. We synthesize 
these areas to identify the critical research gap that our study aims to fill.

The Economics of Cyber Risk and Information Asymmetry

    The academic treatment of cyber risk has undergone a significant maturation. Initially confined to computer science and information 
systems literature, it was primarily framed as a technical operational risk. The economic implications were first rigorously explored 
through event-study methodologies, which sought to quantify the impact of publicly disclosed data breaches on the market value of 
affected firms. A substantial body of work has consistently found statistically significant negative abnormal returns following breach 
announcements, confirming that markets penalize firms for perceived cybersecurity failures [5-7]. Annual industry reports, such as 
those published by IBM [8] and Verizon [9], also provide invaluable empirical data on the financial impact of data breaches, consistent-
ly showing rising costs and identifying factors like “time to contain” as major cost drivers.

     These studies, while foundational, primarily capture direct and immediately quantifiable costs, such as regulatory fines and litiga-
tion expenses. However, the full economic burden of a cyber event is far broader, encompassing a range of indirect costs that are more 
challenging to measure but potentially more damaging in the long term. These include reputational harm leading to customer churn, 
the loss of proprietary intellectual property, increased costs of capital due to higher perceived risk, and business interruption costs 

https://pubmed.ncbi.nlm.nih.gov/27812521/
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[10].

    Furthermore, the event-study paradigm is predicated on the public disclosure of an event, creating a fundamental limitation. The 
landscape of cyber risk is rife with information asymmetry, a concept famously articulated in the context of used car markets [11]. A 
firm’s true cybersecurity posture and its active compromises are often unobservable to outside investors. This opacity suggests that 
market prices may not efficiently reflect latent cyber vulnerabilities, leading to a mispricing of risk. While some firms may attempt to 
signal their superior security posture through certifications or adherence to frameworks [12], the overall market remains informa-
tionally inefficient. Our research posits that aggregated, high-frequency CTI can act as a powerful tool to penetrate this veil of asymme-
try, not at the firm level, but at the systemic level, which remains a critically under-explored area.

Cyber Threat Intelligence (CTI) as a Predictive Signal 

    Cyber Threat Intelligence (CTI) can be formally defined as evidence-based knowledge, including context, mechanisms, indicators, 
implications, and actionable advice, about an existing or emerging menace or hazard to assets [13]. For our purpose of financial mod-
eling, the critical question is whether CTI contains predictive information that has not yet been fully incorporated into asset prices, 
thereby presenting a challenge to the semi-strong form of the Efficient Market Hypothesis [14]. While CTI has traditionally been opera-
tionalized within security operations centers (SOCs) for detection, response, and mitigation, its role as a high-dimensional data stream 
with potential macroeconomic relevance is still nascent.

     Modern CTI datasets encompass indicators of compromise (IOCs), exploit campaigns, malware families, adversary tactics (as codi-
fied in ATT&CK frameworks), and telemetry from honeypots, darknet monitoring, and intrusion detection systems. When aggregated 
across geographies and organizations, CTI represents a dynamic reflection of cyber threat pressure, which may serve as a leading 
indicator of digital instability [4, 15].

    In the context of systemic risk forecasting, CTI can be analogized to high-frequency financial sentiment or macroeconomic leading 
indicators. For instance, surges in exploit development targeting financial services, or sudden increases in phishing infrastructure 
targeting SWIFT endpoints, could portend disruptions with market-wide ramifications. Despite this potential, very few studies have 
treated CTI as a structured input for macro-financial forecasting models, and fewer still have tested its predictive capacity at national 
scales.

     This study addresses that gap by extracting and preprocessing a global CTI dataset, engineering meaningful threat vectors, and em-
bedding them as predictors within machine learning and deep learning architectures. Our hypothesis is that CTI is not merely reactive 
data for post-breach forensics, but proactive data with predictive relevance over real-world financial outcomes.

Systemic Risk, Financial Contagion, and the Globalized Threat Landscape

    Our decision to forecast a national financial stress index using global cyber threat data is a deliberate one, grounded firmly in the 
modern theory of financial contagion. Systemic risk is defined as the risk of a cascade of failures across the financial system, triggered 
by an initial shock that propagates through a network of interconnections [16]. The channels for this contagion are well-documented 
and include: (i) direct balance sheet exposures through interbank lending and derivatives contracts; (ii) indirect linkages, where the 
failure of one institution forces asset fire sales, depressing market prices and weakening the balance sheets of other institutions hold-
ing similar assets; and (iii) correlated information shocks, where a significant negative event causes a broad-based flight to safety and 
reassessment of risk appetite by investors globally [17].

    A large-scale, cross-border cyberattack represents a quintessential correlated information shock. It can simultaneously disrupt op-
erations, erode confidence, and signal a heightened level of global insecurity, causing investors worldwide to de-risk their portfolios 
in a correlated manner. Given the U.S. financial market’s hegemonic role and deep integration into global capital flows, the STLFSI, a 
composite index reflecting stress across equity, credit, and funding markets, serves as a highly sensitive barometer for such global 
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shocks. Therefore, we hypothesize that significant global cyber events will be rapidly reflected in this index, making it a suitable, albeit 
national, proxy for the financial materialization of global cyber risk.

The Frontier of Temporal Forecasting: From RNNs to Transformers

    The task of forecasting financial time series has pushed the boundaries of statistical and machine learning models. While autore-
gressive models, such as ARIMA, and volatility models, like GARCH, remain useful benchmarks, their core assumptions of linearity and 
stationarity are often violated by financial data. The deep learning revolution introduced Recurrent Neural Networks (RNNs) and their 
more sophisticated successors, including Long Short-Term Memory (LSTM) networks [18] and Gated Recurrent Unit (GRU) networks 
[19]. Through their internal gating mechanisms, these models could selectively remember or forget information over time, partially 
solving the vanishing gradient problem and enabling the modeling of temporal dependencies.

    However, the inherently sequential processing of RNNs presents its own limitations, particularly in capturing very long-range depen-
dencies and in computational efficiency. The paradigm shift occurred with the introduction of the Transformer architecture, which dis-
pensed with recurrence entirely and relied on a self-attention mechanism [20]. Self-attention allows the model to weigh the influence 
of all other data points in a sequence when producing a representation for a given point, regardless of their distance. This capacity to 
identify salient, long-distance relationships is perfectly suited to our problem, where a critical cyber event on a single day might be the 
most important predictor for financial stress weeks later, even amidst a sea of noisy, intervening data.

    Our study employs the Temporal Fusion Transformer (TFT), an adaptation of the canonical Transformer architecture specifically 
designed for multi-horizon forecasting of tabular time-series data, which incorporates features like gating layers and static covariate 
encoders to further enhance performance [21]. To date, applications of the TFT have largely centered on sales, weather, and electric-
ity load forecasting. Our study represents a novel application of the TFT in the cyber-financial domain, offering not just forecasts but 
interpretable signals of cyber-induced financial pressure.

The Imperative for Explainability (XAI) in High-Stakes Financial Forecasting

    The superior predictive power of complex models like the TFT comes at the cost of inherent opacity. In a high-stakes domain like 
finance, where model risk management is a key regulatory and ethical concern [22], a prediction without a rationale is of limited value. 
This has catalyzed the field of Explainable AI (XAI).

     In this study, we adopt a dual-pronged approach to interpretability. First, we use a model-agnostic method, SHapley Additive exPla-
nations (SHAP), which is grounded in cooperative game theory and provides a theoretically sound way to compute the contribution of 
each feature to a specific prediction [23]. Secondly, we leverage a model-specific technique, analyzing the internal multi-head attention 
maps of the TFT. This allows us to visualize which past time steps and which features the model focused on when generating its fore-
cast, offering a direct diagnostic window into its internal reasoning. This comprehensive approach to XAI is critical for validating our 
model’s behavior, building trust in its outputs, and extracting scientifically meaningful insights from its complex patterns.

Research Design and Methodology

    This study employs a quantitative, predictive, and comparative research design. It is quantitative in its reliance on numerical time-se-
ries data and statistical modeling. It is predictive in its primary objective of forecasting a future state (financial stress) based on his-
torical data. Finally, it is comparative in its rigorous benchmarking of advanced deep learning architectures against canonical machine 
learning ensembles. The entire methodological pipeline is designed to ensure robustness, replicability, and transparency. Figure 2 
provides an overview of this methodological pipeline.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Figure 2: Overview of Methodological Pipeline.

Data and Sample Construction 
Dependent Variable: The St. Louis Fed Financial Stress Index (STLFSI)

     Our target variable, denoted as yt is the daily value of the STLFSI. This index is a carefully constructed composite variable, which ob-
viates the need for selecting a single, potentially noisy, market indicator. It is derived via principal component analysis from 18 weekly 
U.S. financial variables, including seven interest rates, six yield spreads, and five other indicators. By capturing the co-movement across 
these diverse series, the STLFSI provides a robust, smoothed measure of systemic stress, making it an ideal dependent variable for our 
forecasting objective.

Independent Variables: Global Cyber Threat Intelligence (CTI)

    Our primary predictor variables are derived from a comprehensive, proprietary panel dataset [24] that captures the multifaceted 
nature of cyber-attacks at a global scale. The dataset comprises over 77,000 observations, documenting daily cyber threat activity 
across 225 countries over a nine-year period from January 2015 to December 2024. The data is structured as a panel where each row 
represents the percentage of specific cyber-attacks experienced by a given country on a particular day.

   The core of this dataset consists of eight critical threat vectors, which form the basis of our engineered features. These vectors in-
clude: Spam, Ransomware, Local Infection, Exploit, Malicious Mail, Network Attack, On-Demand Scan, and Web Threat. Each of these 
variables exhibits distinct statistical properties. For instance, Ransomware attacks, while globally persistent, are characterized by a 
highly right-skewed distribution (mean: 0.000130, std: 0.000186), indicating that catastrophic, high-percentage events in any single 
country are rare but significant tail risks. In contrast, threats like Local Infection (mean: 0.013350) and Web Threat (mean: 0.013006) 
represent a more stable, high-volume baseline of malicious activity. The dataset also includes country-level world rankings for each 

https://pubmed.ncbi.nlm.nih.gov/27812521/
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threat dimension, which, while providing useful context, were not used as direct features in our predictive models.

     A critical step in our methodology was the transformation of this rich panel data into a daily time series suitable for forecasting our 
single target variable, the STLFSI. To achieve this, for each day t in the observation period, we aggregated the country-level percentage 
data for each of the eight threat vectors. Specifically, we computed the global daily sum of the attack percentages for each vector to 
create a single time series representing the total daily magnitude of global cyber threat activity. This aggregation process yields our 
final set of CTI predictor variables Ct = [C1,t, C2,t,…,C8,t], where each Ci,t represents the aggregated global measure for threat vector i on 
day t. This approach is predicated on our hypothesis that the total volume of global cyber activity, rather than its specific geographic 
distribution on any given day, serves as the most potent signal for systemic financial stress.

Data Conditioning and Feature Engineering

    Raw data streams were subjected to a multi-stage conditioning and feature engineering process to construct the final model-ready 
feature set, Xt. Table 1 provides an overview of the engineered feature set with each feature’s source, and a brief description.

CTI Feature Derivation

To transform raw threat counts into more informative features, we first engineered a composite ThreatScore as a weighted linear 
combination of the most impactful threat vectors:

     The weights, wi, were assigned a priori based on established cybersecurity taxonomies, with higher weights allocated to threats with 
greater potential for direct financial or operational disruption (e.g., Ransomware, Exploit) versus lower-impact threats (e.g., Spam). 
From the raw count vectors Ct and the derived ThreatScore, we computed a set of statistical moments for each daily observation t: the 
mean (µ), maximum (max), and standard deviation (σ) over a 24-hour period. This yields features that capture not only the baseline 
threat level (μ) but also the magnitude of peak events (max) and the volatility of threat activity (σ).

Financial Feature Derivation

    To provide the models with autoregressive and trend information, the STLFSI series, yt, was augmented with a standard set of engi-
neered features: lagged values yt-1, yt-3, yt-7 (StressIndex_Lag_1, StressIndex_Lag_3, StressIndex_Lag_7), moving averages over 7 and 30-
day windows (StressIndex_MA_7, StressIndex_MA_30) to capture short and medium-term trends, and a 7-day rolling standard deviation 
(StressIndex_Volatility) as a measure of recent index volatility.

Data Integration and Normalization

     The CTI and financial feature sets were merged on a daily timestamp, creating a unified feature vector Xt for each day. Any missing 
values resulting from non-synchronous reporting were handled via forward-filling for CTI features and linear interpolation for the 
financial index. The complete feature matrix was then normalized using StandardScaler from scikit-learn. This process standardizes 
each feature to have a mean of zero and a standard deviation of one, which is a critical prerequisite for the proper convergence of gra-
dient-based optimization algorithms and for models sensitive to feature scale.

Sequence Generation for Temporal Models

    The final step was to transform the time-series data into a supervised learning format suitable for sequence-aware models. We 
employed a sliding window approach with a lookback period, T, of 30 days. This creates input tensors X of shape (N - T, T, F) and corre-
sponding target vectors y of shape (N - T), where N is the total number of features. Each sample (Xi, yi) thus consists of a 30-day history 
of all features and the financial stress index value on the subsequent day.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Feature Name Source Dataset Description
CTI Features
ThreatScore_mean CTI The average daily value of the composite ThreatScore, indicating 

the baseline level of threat activity.
ThreatScore_max CTI The maximum daily value of the composite ThreatScore, indicat-

ing peak threat activity.
ThreatScore_std CTI The standard deviation of the daily ThreatScore, measuring the 

volatility of threat activity.
Ransomware_mean CTI The average daily value of ransomware threat activity.
Ransomware_max CTI The maximum daily value of ransomware threat activity.
Ransomware_count CTI The number of ransomware-related entries aggregated for the 

day.
Network Attack_mean CTI The average daily value of network attack activity.
Network Attack_max CTI The maximum daily value of network attack activity.
Exploit_mean CTI The average daily value of exploit-related activity.
Exploit_max CTI The maximum daily value of exploit-related activity.
Malicious Mail_mean CTI The average daily value of malicious mail activity.
Malicious Mail_max CTI The maximum daily value of malicious mail activity.
Financial Features
StressIndex Financial The daily value of the St. Louis Fed Financial Stress Index (the 

target variable).
StressIndex_MA_7 Financial The 7-day simple moving average of the STLFSI, capturing short-

term trends.
StressIndex_MA_30 Financial The 30-day simple moving average of the STLFSI, capturing medi-

um-term trends.
StressIndex_Volatility Financial The 7-day rolling standard deviation of the STLFSI, measuring 

recent volatility.
StressIndex_Return Financial The daily percentage change in the STLFSI.
StressIndex_High_Risk Financial A binary indicator (1 if STLFSI > 0.5, else 0) flagging periods of 

high financial stress.
StressIndex_Lag_1 Financial The value of the STLFSI from the previous day (t-1), providing 

autoregressive information.
StressIndex_Lag_3 Financial The value of the STLFSI from three days prior (t-3).
StressIndex_Lag_7 Financial The value of the STLFSI from seven days prior (t-7).
Interaction Features
ThreatScore_StressIndex 
_Interaction

Hybrid The multiplicative product of ThreatScore_mean and StressIndex 
to model state-dependent effects.

Table 1: Engineered Feature Set.

Modeling Architectures and Rationale

     This study employs a multi-model approach, pitting advanced deep learning architectures against strong, conventional baselines.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Deep Learning Architectures

1.	 Temporal Fusion Transformer (TFT): This is our primary model. The TFT architecture is specifically designed for multi-horizon 
forecasting on tabular time-series data. Its key components include: (i) Gated Residual Networks (GRNs) used throughout the 
model as a flexible building block to apply non-linear transformations; (ii) Variable Selection Networks (VSNs) that learn the 
relevance of each input feature, providing interpretability and pruning noisy inputs; and (iii) a Multi-Head Self-Attention layer 
that allows the model to learn long-range temporal patterns across the 30-day lookback window.

2.	 Dual-Stream LSTM: This custom architecture was designed to explicitly handle the heterogeneous nature of our data. It consists 
of two parallel, two-layer LSTMs with 128 hidden units each and a dropout rate of 0.3. One stream is fed only the CTI-derived 
features, the other only the financial features. The final hidden states from both streams are concatenated and passed through a 
two-layer feed-forward network to produce the final forecast.

3.	 GRU with Attention: This model utilizes a two-layer, bidirectional Gated Recurrent Unit (GRU) with 128 hidden units. The bidi-
rectionality allows it to encode information from both forward and backward passes over the input sequence. The output hidden 
states are then processed by a Bahdanau-style attention mechanism, which computes a context vector as a weighted sum of the 
hidden states, allowing the model to focus on the most relevant time steps for the prediction task.

Benchmark Ensemble Models

     A suite of powerful, non-deep-learning models was selected to serve as robust baselines: Random Forest (a bagging-based ensem-
ble), XGBoost and LightGBM (two highly optimized gradient boosting implementations), and a Stacking Regressor. The stacking 
model uses the out-of-fold predictions from the three base ensembles as input features for a final-stage LinearRegression model, 
creating a multi-layered meta-learner.

Experimental Protocol and Evaluation 
Data Partitioning and Feature Selection

    The complete, feature-engineered dataset was partitioned into a training set (60%), a validation set (20%), and a final hold-out test 
set (20%). A random split methodology was employed. While chronological splits are common, a random split was chosen for this 
study to ensure that the training and validation sets were exposed to the full range of market volatility regimes present in the data. 
This guards against the risk of the model overfitting to a specific temporal period (e.g., a low-volatility training period) and failing to 
generalize to different market conditions in the test set. Following the feature engineering stage, no subsequent automated feature 
selection was performed; all engineered features detailed in Table 1 were utilized by the models. This decision was made to allow the 
models themselves, particularly the tree-based ensembles and the TFT with its variable selection networks, to internally determine 
feature relevance.

Hyperparameter Optimization for Ensemble Models

   To determine the optimal configuration for the benchmark models, we employed a GridSearchCV strategy with 3-fold cross-vali-
dation on the training set. This exhaustive search systematically evaluates all combinations of the specified hyperparameters. The 
parameter grids for each model are detailed in Table 2.

    For each model, the combination of hyperparameters that yielded the best average performance across the cross-validation folds 
was selected for the final model, which was then trained on the entire training set and evaluated on the hold-out test set.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Model Hyperparameter Values
Random Forest

n_estimators [100, 200]
max_depth [10, 20, None]
min_samples_split [2, 5]

XGBoost
n_estimators [100, 200]
max_depth [3, 6]
learning_rate [0.01, 0.1]

LightGBM
n_estimators [100, 200]
max_depth [10, 20]
learning_rate [0.01, 0.1]

Table 2: Ensemble Models Parameters.

Training Regime for Deep Learning Architectures

     The deep learning models were trained for a fixed 50 epochs using the Mean Squared Error (MSELoss) as the objective function to 
be minimized. The optimization was performed using the Adam optimizer, selected for its adaptive learning rate capabilities, with an 
initial learning rate set to η=0.001. To facilitate stable convergence, we implemented a learning rate scheduler, ReduceLROnPlateau. 
This scheduler monitors the validation loss at the end of each epoch and reduces the learning rate by a multiplicative factor of 0.5 if 
no improvement is observed for a “patience” of 10 consecutive epochs. This prevents the optimizer from getting stuck in local minima 
and allows for more refined adjustments as the model approaches convergence. The architectural specifics, including hidden units 
(128-256), dropout rates (0.2-0.3), and layer counts (2-6), are detailed in Section 3.3.1. The model’s performance on the validation set 
was monitored throughout training, but the final reported metrics are exclusively from the evaluation on the unseen hold-out test set.

Evaluation Metrics

      Model performance on the unseen test set was rigorously evaluated using three standard metrics: Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE), and the coefficient of determination (R2).

Interpretability Framework 
To ensure our findings are not only predictive but also explanatory, we implemented a dual-pronged XAI strategy:

1.	 SHAP (SHapley Additive exPlanations): We applied the TreeExplainer and KernelExplainer from the SHAP library to the best-per-
forming models. This technique, grounded in cooperative game theory, computes the Shapley value for each feature, representing 
its average marginal contribution to the prediction across all possible feature coalitions. This provides a theoretically sound basis 
for feature importance ranking.

2.	 Attention Visualization: For the TFT and GRU-Attention models, we directly extracted the attention weight matrices from the 
attention layers during the forward pass on the test set. These weights, which sum to one over the input sequence, were then 
averaged across all test samples and visualized as heatmaps. This allows for a direct inspection of the model’s internal focus, 
revealing which past time steps it consistently deems most salient for making its predictions.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Results 
Comparative Model Performance

     All seven models were trained and evaluated on the hold-out test set. The performance, as measured by Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and the coefficient of determination (R2), is presented in Table 3 and Figure 3.

Model MAE RMSE R²
Deep Learning Models
Dual-Stream LSTM 0.0762 0.0950 0.8976
Temporal Fusion Transformer (TFT) 0.1703 0.2022 0.5358
GRU with Attention 0.0487 0.0664 0.9499
Ensemble Models
Random Forest 0.0228 0.0350 0.9861
XGBoost 0.0194 0.0321 0.9883
LightGBM 0.0316 0.0549 0.9658
Stacking Ensemble 0.0298 0.0460 0.9759

Table 3: Comparative Performance of Forecasting Models on the Hold-Out Test Set.

Figure 3: Overview of the Models’ Performance across All Metrics.

     The empirical results yield several key insights. First and foremost, the XGBoost model emerged as the superior performer across 
all evaluation metrics, achieving the lowest MAE (0.0194) and RMSE (0.0321), and the highest R2 score of 0.9883. This indicates that 
the XGBoost model was able to explain over 98.8% of the variance in the STLFSI on the unseen test data.

    A particularly salient finding is the marked performance differential between the two classes of models. The tree-based ensemble 
methods consistently and substantially outperformed the deep learning architectures. This result is noteworthy and suggests that, for 
this specific dataset, which is characterized by tabular, feature-engineered data rather than raw, unstructured sequences, the capacity 
of gradient-boosted trees to capture intricate, non-linear interactions between features is more effective than the temporal dependen-
cy modeling of recurrent and attention-based networks.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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     Among the deep learning models, the GRU with Attention mechanism demonstrated the strongest performance, with an impressive 
R2 of 0.9499. The custom Dual-Stream LSTM also performed reasonably well. The Temporal Fusion Transformer, surprisingly, yielded 
the weakest results in this specific application.

Deconstructing Model Predictions via XAI

     To move beyond aggregate performance metrics and understand the predictive logic of the superior XGBoost model, we conducted 
a feature attribution analysis using SHAP (SHapley Additive exPlanations). This allows for the decomposition of each prediction into 
the contributions of its constituent features, revealing the drivers of the model’s output. The features are ranked below in Figure 4 by 
their global importance, determined by the mean absolute SHAP value across all test set predictions.

   The analysis yields a nuanced and highly insightful view of the model’s decision-making process. The most influential features are 
predominantly autoregressive, derived from the financial index’s own recent history. Features such as StressIndex_Z_t-9, StressIndex_
High_Risk_t-9, and the most recent one-day lag, StressIndex_Lag_1, rank at the top, confirming the expected result that the market’s 
recent state and momentum are the primary determinants of its immediate future.

Figure 4: SHAP Summary Plot for the XGBoost Model.

     Crucially, however, the analysis reveals that the model’s exceptional performance is not derived from these autoregressive features 
alone. The third most important feature is the engineered interaction term, Threatscore_Stresslndex_Interaction_t-9. The high rank of 
this feature is a significant finding, indicating that the model learned a critical non-linear relationship: the predictive impact of the cy-
ber ThreatScore is conditional upon the existing level of financial stress. A high ThreatScore has a materially different, likely amplified, 
effect during a period of already-high market stress than it does during a calm period. This context-dependent signal is a sophisticated 
insight that a simpler, linear model would fail to capture.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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     Furthermore, pure Cyber Threat Intelligence (CTI) features, while not the single most dominant, are confirmed to be indispensable 
components of the model’s logic. Features such as ThreatScore_std (the volatility of threat activity) and ThreatScore_mean (the base-
line level of threat activity) appear consistently among the most important predictors. This demonstrates that CTI provides significant, 
incremental predictive power that is not redundant with the information contained in the financial variables.

     Finally, the distribution of _t-X suffixes across the top features shows that the model effectively synthesizes information from across 
the temporal lookback window, leveraging signals from the very recent past (t-0, t-1) as well as more distant history (t-9, t-8, t-6), 
weaving them into a comprehensive predictive narrative. In summary, the XGBoost model constructs its forecasts by anchoring on 
recent market momentum and then skillfully refines them using the context-dependent, non-linear signals provided by global cyber 
threat intelligence.

Discussion and Future Work

    The empirical results present a clear, albeit nuanced, narrative. Our models successfully demonstrate that global Cyber Threat Intelli-
gence contains significant predictive information for systemic financial stress. However, the specific manner in which this relationship 
manifests and the relative performance of our modeling techniques invite a deeper, more critical reflection.

Interpretation of Empirical Findings

The most striking result from our comparative analysis is the decisive outperformance of the XGBoost model over the sophisticated 
deep learning architectures. This finding, while perhaps counterintuitive, is highly instructive. We posit three potential explanations 
for this outcome:

1.	 Efficacy of Feature Engineering: The deep learning models, particularly the Temporal Fusion Transformer, are designed for 
end-to-end representation learning from relatively raw sequences. Our methodology, however, involved a significant degree of 
manual feature engineering: creating autoregressive lags, interaction terms, and a composite ThreatScore. This pre-processing 
effectively transforms the problem into a “structured” or “tabular” data challenge, a domain where gradient-boosted tree en-
sembles like XGBoost are known to excel. It is plausible that our feature engineering distilled the most potent predictive signals 
so effectively that the deep learning models’ primary strength in automatic representation learning was rendered less critical.

2.	 Data Volume vs. Model Complexity: Deep learning models are notoriously data-hungry. While our nine-year period of coverage 
provides a dense daily dataset, the overall number of distinct temporal epochs may be insufficient for a highly parameterized 
model like the TFT to generalize effectively without overfitting. XGBoost, being less parameter-intensive and more robust on 
tabular data of this scale, was able to find a more generalizable solution.

3.	 The Nature of the Predictive Relationship: The SHAP analysis revealed that the model’s logic is heavily reliant on feature inter-
actions rather than long-range temporal dependencies alone. XGBoost is exceptionally adept at capturing high-order interactions 
between variables. The high importance of the Threatscore_Stresslndex_Interaction term supports this. This suggests the core of 
the problem lies in understanding the state-dependent impact of CTI, how cyber threats interact with the current market context, 
a task for which XGBoost’s decision tree structure is perfectly suited.

     The SHAP results themselves confirm our central hypothesis but with a crucial nuance. While direct CTI features like ThreatScore_
mean are important, their predictive power is magnified when considered in interaction with the market’s own state. This implies that 
CTI does not act as a simple, independent shock. Instead, it functions as a potent amplifier or catalyst, exacerbating volatility and stress 
most severely when the system is already in a fragile state.
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Implications for Theory and Practice

The findings of this study have significant implications for multiple domains:

Theoretical Implications

1.	 For financial economics, this research provides robust, quantitative evidence that a non-financial, operational data stream can 
be a source of systematic risk. It empirically validates the theory of financial contagion through a novel, technological channel, 
suggesting that macroeconomic models of financial stability are incomplete without accounting for cyber-risk vectors [25-27].

2.	 For cybersecurity science, this work offers a framework for translating technical threat metrics into the language of economic 
impact. By linking aggregate CTI to a validated financial stress index, it provides a methodology for CISOs and security research-
ers to quantify and communicate the macroeconomic relevance of their domain, bridging the long-standing gap between techni-
cal security posture and financial performance.

Practical Implications

1.	 For asset managers and institutional investors, the framework can serve as a new input for tactical asset allocation and dy-
namic risk management. A model that provides even a short-term, probabilistic forecast of rising systemic stress can inform 
decisions to hedge portfolios or reduce market exposure.

2.	 For financial regulators and central banks, this research provides a proof-of-concept for a real-time monitoring dashboard for 
a previously opaque risk vector. It offers a potential leading indicator of financial instability that originates outside the traditional 
financial system.

3.	 For corporate boards and CISOs, the ability to state that a given level of aggregate cyber threat activity statistically corresponds 
to an increase in systemic financial risk provides a powerful argument for cybersecurity investment, framing it not as a cost cen-
ter but as a crucial component of enterprise risk management.

Limitations and Methodological Reflexivity

1.	 The Proxy Nature of the Target Variable: As discussed, the STLFSI is a U.S.-specific index. While we have provided a strong 
theoretical justification for its use as a barometer for global risk, a natural extension of this work would involve applying the 
framework to other regional stress indices or constructing a truly global financial stress index.

2.	 A Priori Feature Weighting: The weights used to construct the ThreatScore were assigned a priori based on established taxon-
omies. A limitation of this approach is that the weights are static and not empirically derived from the data itself. Future work 
could explore methods to learn these weights dynamically as part of the model training process.

3.	 Correlation vs. Causation: This study, like most predictive modeling research, demonstrates strong correlation and predictive 
power, not definitive causation. While the lead-lag structure and anomaly analysis provide supporting evidence for a directional 
relationship, formal causal inference requires different techniques. Future studies could employ methods like Granger causality 
tests or more complex causal discovery algorithms to probe the causal pathways.

4.	 Model Specificity: The surprising underperformance of the TFT could be contingent on our specific feature engineering choices 
or the dataset’s scale. Its capabilities might be better realized on a larger dataset or one with more raw, unstructured features.

Future Research Trajectories

The findings and limitations of this study illuminate several promising trajectories for future inquiry. We outline four key avenues:

1.	 Granular, Enterprise-Level Analysis: A logical next step is to adapt this framework from the systemic to the firm level. Future 
research could focus on predicting enterprise-specific financial metrics such as stock price volatility, credit default swap spreads, 
or even quarterly revenue impacts, using a combination of global CTI and firm-specific data. This would translate the macroeco-
nomic insights of our study into a direct tool for corporate risk management.
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2.	 Enriching CTI with Unstructured Data: Our current model relies on structured, quantitative threat counts. A significant enrich-
ment would involve incorporating unstructured data through advanced Natural Language Processing (NLP). Models like BERT 
or other Transformers could be used to analyze textual CTI from sources like threat intelligence reports, cybersecurity news, and 
dark web forums to extract features related to threat actor sentiment, novel attack techniques (TTPs), and targeted industries, 
adding a rich qualitative dimension to the predictive model.

3.	 Moving from Prediction to Causal Inference: This study firmly establishes a predictive link. The next frontier is to probe the 
causal pathways. This would require moving beyond predictive models to formal causal inference frameworks. Techniques such 
as Bayesian structural time-series models, dynamic treatment effect models, or difference-in-differences approaches could be 
employed to better isolate the causal impact of specific, major cyber events (e.g., the NotPetya attack) on the financial system, 
controlling for other confounding economic factors [28, 29].

4.	 Real-Time Implementation and Dashboarding: Finally, a significant practical contribution would be to transition this research 
framework into a live, real-time cyber-financial risk dashboard. This would involve substantial engineering challenges, including 
building robust data pipelines for streaming CTI feeds and deploying the trained model in a production environment for contin-
uous forecasting. Such a tool could serve as an invaluable resource for regulators, investors, and enterprise leaders seeking to 
navigate the complex and evolving landscape of 21st-century risk.

Conclusion

     This study embarked on an investigation into one of the most pressing and under-quantified risks of our time: the impact of global 
cyber threats on financial stability. We confronted the central problem that extant financial risk models are ill-equipped to process the 
high-dimensional, high-frequency nature of Cyber Threat Intelligence (CTI). In response, we developed and validated a comprehensive 
methodological framework to fuse a global CTI dataset with the U.S. STLFSI, a robust proxy for systemic financial stress. By deploying 
a suite of machine learning models, we demonstrated that CTI contains significant and actionable predictive power.

     Our key findings are threefold. First, we provided robust empirical evidence that a model incorporating CTI can forecast financial 
stress with a high degree of accuracy (R2>0.98). Secondly, we found that a gradient-boosted ensemble model, XGBoost, decisively 
outperformed advanced deep learning architectures on our feature-engineered, tabular dataset. Third, and perhaps most importantly, 
our explainability analysis revealed that the model’s predictive strength lies not just in processing CTI as an independent signal, but in 
capturing the complex, non-linear interaction between cyber threat levels and the pre-existing state of the financial market.

     The contributions of this work are therefore methodological, in proposing a replicable end-to-end pipeline; empirical, in validating 
the cyber-financial risk nexus with novel data; and interpretive, in using XAI to deconstruct the “black box” and reveal the state-depen-
dent nature of this critical relationship.
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