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Abstract

    Regression models with an increasing number of unknown parameters and different and 
unknown values of variances of random errors of observations are considered. The specificity 
of such regression models is that there is no more than one response at each observation point, 
which does not allow estimation of the variances of random errors of observations. For the cal-
culation of the l.s.e, the iteration process has been constructed. It is shown that the l.s.e are 
unbiased and consistent. Using these results, the approach for the construction of a confidence 
band for the unknown function in regression models is suggested.

Keywords: regression models with an increasing number of unknown parameters; least squares 
estimator; Gauss-Newton approach; iterative process

Introduction

    In regression analysis, least squares is a parameter estimation method based on minimizing the 
sum of the squares of the residuals (a residual being the difference between an observed value and 
the fitted value provided by a model) made in the results of each equation. More simply, least squares 
is a mathematical procedure for finding the best-fitting curve to a given set of points by minimizing 
the sum of the squares of the offsets (“the residuals”) of the points from the curve.

     The most important application is in data fitting. When the problem has substantial uncertainties 
in the independent variable (the x variable), then simple regression and least-squares methods have 
problems; in such cases, the methodology required for fitting errors-in-variables models may be con-
sidered instead of that for least squares.

    Least squares problems fall into two categories: linear or ordinary least squares and nonlinear least 
squares, depending on whether or not the model functions are linear in all unknowns. The linear 
least-squares problem arises in statistical regression analysis and has a closed-form solution. The 
nonlinear problem is usually solved by iterative refinement; at each iteration, the system is approxi-
mated by a linear one, and thus the core calculation is similar in both cases.
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     Regression analysis has a profound history, starting with observations over a short interval. The main idea is to get observations in 
short intervals, using scientific tools to make effective recommendations for practice. Such an approach was an impetus not only for 
solving practical problems but also contributed to the development of various fields of fundamental science.

     The development and basis of regression analysis are related to the names of well-known scientists. The earliest form of regression 
is the method of the least squares, which was published by A. Legendre in 1805 and F. Gauss in 1809 in Theoria Motvs Corporvm Coeles-
tivm. Two great scientists - A. Legendre and F. Gauss- applied the least squares method to determine, from astronomical observations, 
the orbits of bodies around the Sun (mostly comets, but also later newly discovered minor planets). Although A. Legendre published 
the first paper on the least squares in 1806, F. Gauss did it earlier. He created and used this method in 1795, when he was interested in 
astronomy, but did not publish it due to not paying serious attention to this problem.

   However, the Academic world thinks that Friedrich Gauss was the creator of the least squares method and hence, a pioneer of re-
gression analysis. Nevertheless, we think that the pioneers of regression theory are two distinguished scientists - Friedrich Gauss 
and Adrien-Marie Legendre. Friedrich Gauss [20, 22] and Adrien Marie Legendre [15] created the basis of regression analysis. Later, 
various scientists made essential contributions to the development of regression analysis, Fisher R., Huber P., Rao C.R., Seber G.F., and 
others [2, 13, 16, 19]. There are various types of regression models, including polynomials, robust, ridge, quantile regressions, and 
others [1, 3, 5, 10, 18]. In this paper, we consider linear and nonlinear models. The specificity of the models considered in this paper 
is that the variances of random errors of observations are different and unknown. Moreover, at each point of observation, there is no 
more than one response, which does not allow us to estimate the variances. Some authors try to estimate the variances of random 
errors of observations [7, 17, 23], but it is not possible in many practical tasks.

Regression models 
Linear regression models

    In statistics and various applications, linear regressions can be considered a statistical model that may be used for estimating the 
linear relationship between a scalar response and one or more explanatory variables. The case of one explanatory variable is called 
simple linear regression, and more than one, the process is called multiple linear regression. This term is distinct from multivariate 
linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable. If the explanatory 
variables are measured with error, then random errors in variables models are required, also known as measurement error models.

     In linear regression analysis, the relationships are modeled using linear predictor functions whose unknown model parameters are 
estimated from the data. Such models are called linear models. Most commonly, the conditional mean of the response given the values 
of the explanatory variables is assumed to be an affine function of those values; less commonly, the conditional median or some other 
quantile is used. Like all forms of regression analysis, linear regression focuses on the conditional probability distribution of the re-
sponse given the values of the predictors, rather than on the joint probability distribution of all of these variables, which is the domain 
of multivariate analysis.

     The most basic form of linear regression is known as simple linear regression, which is used to quantify the relationship between 
one predictor and one response variable. Assume that as a matter of experiment, there is observed some response yi for which we have

yi = f(xi) +εi, i = 1,2,…N.        (2.1.1)

     where f(x) is some unknown function, εi is a random error of the observation, and N is the number of observations. If function f(x) 
can be represented in the following form

f(xi) = θ1φ1(xi) + θ2φ2(xi) +…+ θmφm(xi)

     where θ1, θ2,…, θm is the sequence of unknown parameters and φ1(xi), φ2(xi),…, φm(xi) is the system of linearly independent functions,

https://primerascientific.com/psen


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

The Properties of the Least Squares Estimate in Regression Models with an Increasing Number of Unknowns Parameters 15

       is the sequence of independent and identically distributed random variables	 (2.1.2)

    The relation (2.1.1) is called a linear regression model with m unknown parameters. It is assumed that the number of unknown 
parameters m depends on the number of observations N and

     The simple form of the linear regression model for 50 random points where the random errors have (normal) Gaussian distribution 
around the line y = 1.5x+2 is given in Fig.1. Thus, in Fig.1 is assumed that the data are approximated by the straight line y = 1.5x+2.

Figure 1: Linear regression model for 50 random points.

Nonlinear regression models

    In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function that is a 
nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method 
of successive approximations. Nonlinear models have quite complicated structures in comparison with linear models. In the capacity 
of examples of nonlinear functions can be considered the exponential functions, logarithmic functions, trigonometric functions, pow-
er functions, and others. Some functions, such as the exponential or logarithmic functions, can be transformed so that they become 
linear. When it is transformed into the standard linear regression can be performed but must be applied with caution. Unlike (2.1.1) 
in nonlinear regression, function f(x) has a nonlinear structure that does not allow estimation of unknown parameters. For instance,

yi = f(xi, θ) +εi, i =1,2,…N.      (2.2.1)

     where the function f(x) nonlinearly depends on the parameter θ.

     In Fig.2, there is an example of the nonlinear dependence of response from an independent variable. This data obeys a nonlinear law, 
i.e. nonlinear regression model can be used for the study of such a plot.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Figure 2: Nonlinear regression model.

The Least Squares Estimators 
Least Squares Estimators for linear regression models

     In practice, for a more precise estimation of the unknown function in regression models, it is necessary to increase the number of 
unknown parameters. Hence, regression models with an increasing number of unknowns are interesting from a theoretical as well as 
from a practical point of view. Such models are considered in [11, 12].

     Consider a linear regression model (2.1.1). We can represent (2.1.1) in the following vector form Y = Xθ, where

      is the vector of the unknown parameters and

     Where  are unknown and different (3.1.1)

     At each point xi, there is no more than one observation that does not allow us to estimate the variances of random errors.

      (XTX) is the Fisher information matrix.

     For linear regression models, the l.s.e. based on N observations is defined as

     Let us denote the eigenvalues of the matrix (XTX/N) as

https://pubmed.ncbi.nlm.nih.gov/27812521/
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     , i.e., we assume that det (XTX/N) ≠0

     It is assumed that

     For vector 𝑎𝑁 the expression  (in probability) for 𝑁 → ∞ means that for any

     The main problem is defined when the l.s.e. converges on the true value of unknown parameters. Various authors investigated the 
issue of convergence of the l.s.e. to the true value of unknown parameters and suggested conditions when the l.s.e. is consistent. There 
is also the so-called BLUE (Best Linear Unbiased Estimators). It is shown in [8, 9] that the l.s.e. is an unbiased estimator with minimal 
variance among all linear estimators under some conditions. The consistency of the l.s.e. in linear regression models depends on the 
behavior of the eigenvalues of Fisher matrix.

     For the linear regression model, the l.s.e. can be calculated directly through the Fisher matrix and vector of responses. Unfortunately 
for nonlinear regression models, the calculation of the l.s.e. requires some complicated steps. One of the effective approaches for the 
investigation of such models is the Gauss-Newton method [6], which allows the construction of the iteration process for the calcula-
tion of least square estimators. The main question is to find conditions when the iterated process, constructed by the Gauss-Newton 
method, converges to the true value of the unknown parameter. Introduce the following ratios:

 

     Theorem 3.1.1 Under the conditions of (2.1.1)-(2.1.3) and (3.1.2), the ratios a) and b) are held if and only if 

 

     Proof. If part. Let us consider

     Then it follows from here

 

     Using the Chebyshev inequality, we have

 
 
 
 

     according to the condition of Theorem 3.1.1.

     Only if part. Assume that

https://pubmed.ncbi.nlm.nih.gov/27812521/
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     Consider 

     Then for the components of the vector, we have the following ratio

 

     where  is i-th component of the vector , aij are the elements of the matrix . For aij, according to [14] we have the 

following inequality

     As is the sequence of independent and identically distributed random variables, then according to the Central Limit 

Theorem [21], the  components of the vector  have a normal distribution.

Least Squares Estimates for Nonlinear Regression Models

    Consider the nonlinear regression model (2.2.1). Unlike linear regression models in the nonlinear case, it is not possible to find the 
l.s.e. directly. For finding the l.s.e. for nonlinear regression models, it is necessary to construct an iterated process according to the 
Gauss-Newton approach [6].

    Nonlinear regression models have more complicated structures because the unknown function has a nonlinear structure, which 
does not allow us to directly apply the methods used for the investigation of linear models.

     Consider the following regression model

     where 𝜂(𝑥𝑖, 𝜃∗) -  is nonlinear on 𝜃  function,

     𝜃∗ -  is the true value of the parameter 𝜃  and 𝜃=( 𝜃1, 𝜃2,…, 𝜃N)T is the vector of size N.

     We assume that  are continues on (𝑥, 𝜃) and bounded functions.

     𝐹𝑁(𝜃)-is the matrix of the experience with the elements 𝑓𝑖𝑗 (𝜃);

      - are the ordered eigenvalues of the normed Fisher’s matrix, ,

     𝐵(𝑟)-is the sphere with the radius 𝑟 > 0 with a  center at the point 𝜃∗.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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     For finding l.s.e. we can use the known iterated process, suggested in [5]

 

     where all values of in (3.2.4) were defined above. The main problem is the convergence of the iterated process (3.2.4). Below, every-
where we assume that 𝜃 ∈ 𝐵(𝑟).

 

     Theorem 3.2.1 Assume that the conditions (3.2.2) and (3.2.3) are held.

     If there exists such 𝑁 that the following conditions (3.2.10) ,  (3.2.11) are held

 
 

     Proof. From the matrix analysis [11] for  we have the following ratio

     according to the condition (3.2.11).

     Opening parenthesis in 𝐼2 and denoting 𝐽2,𝑖(𝜃) 𝑖-th term in 𝐼2 we have
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     Similarly, we have

     under the condition (3.2.11).

     By the same approach, we can prove 𝐽2,2(𝜃) → 0 and 𝐼3 → 0 for 𝑟 → 0.

     Open parenthesis in 𝐼4. Denote 𝐽4,𝑖 𝑖-th term in 𝐼4.

 

     According to Lemma 3.2.1 and the conditions of Theorem 3.2.1 we have

 

     Other terms of 𝐽4,𝑖; 𝑖 =  2, 3, 4; have the same form as 𝐽4,𝑖. Hence, 𝐽4(𝜃) → 0 for 𝑟 →  0. Then from Chebyshev’s inequality we have

     which proves Theorem 3.2.1

Conclusion

     In the paper, the method for calculating the l.s.e. is suggested. Under some conditions for eigenvalues of the Fisher matrix, it is proved 
that the l.s.e. is unbiased and consistent. For nonlinear regression models, the Gauss-Newton is constructed. It is shown that if the 
first approximation in the Gauss-Newton method is taken from the sphere of radius r>0, then for , (s is a number of the 
iterations), the solution of the Gauss-Newton iterative process converges to some point 𝜃N and in the capacity of the l.s.e. can be taken

     Such estimators can be used in the capacity of unknown parameters and for estimating the elements of a covariance matrix of the 
deviation vector. This process can allow us to construct a confidence band for an unknown function in a regression model. The details 
investigation of such regression models can be found in the book [24], which will be published in the end of 2025.
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