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Abstract

    The increasing connectivity and complexity of modern systems, from Industrial Control Sys-
tems (ICS) to Internet of Things (IoT) networks, have dramatically expanded the attack surface 
for cyber threats. Traditional security frameworks struggle to adapt to the dynamic nature of 
these environments and often rely on static perimeter-based defenses or rigid policy enforce-
ment. This study introduces the Cognitive Zero-Trust Resilience Framework (CZTRF), a novel ap-
proach that integrates cognitive computing capabilities with zero-trust architectural principles 
to create a self-evolving security posture. Unlike conventional frameworks, CZTRF continuously 
analyzes the operational environment, threat intelligence, and system vulnerabilities to dynam-
ically adjust security controls. By leveraging machine learning to refine the Integrated Cyber 
Risk Management (ICRM) equation variables in real time, the framework quantifies risk more 
accurately and automatically implements proportional countermeasures. CZTRF extends be-
yond traditional zero-trust by incorporating resilience metrics that measure a system’s ability 
to prepare for, absorb, recover from, and adapt to adverse cyber events. The simulation results 
demonstrate that CZTRF significantly improves threat prediction accuracy, reduces response 
time, and enhances system resilience compared with static security frameworks. This study 
presents the theoretical foundations, architectural components, implementation methodology, 
and validation results of the CZTRF, offering a comprehensive approach to securing increasingly 
complex connected systems against evolving cyber threats.

Keywords: adaptive cybersecurity; cognitive computing; connected systems; machine learning, 
OT/ICS security; quantitative risk assessment; resilience; zero-trust architecture
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Abbreviations

Abbreviation Meaning Abbreviation Meaning
AI Artificial Intelligence ML Machine Learning
APT Advanced Persistent Threat MTTD Mean Time To Detect
CORE Common Open Research Emulator OT Operational Technology
CSF Cybersecurity Framework PDP Policy Decision Point
CSO Cybersecurity Optimizer PEP Policy Enforcement Point
CZTRF Cognitive Zero-Trust Resilience Framework RL Reinforcement Learning
DQN Deep Q-Networks ZTA Zero Trust Architecture
ICRM Integrated Cyber Risk Management IT Information Technology
ICS Industrial Control Systems   

Introduction

     The digital transformation of critical infrastructure, industrial systems, and autonomous and connected devices has created unprec-
edented opportunities for improving efficiency, automation, and innovation. However, this increased connectivity has dramatically 
expanded the attack surface for cyber threats. Modern connected systems, spanning from Industrial Control Systems (ICS) and Oper-
ational Technology (OT) to Internet of Things (IoT) networks, face an evolving threat landscape at an alarming pace. According to re-
cent studies, cyberattacks targeting critical infrastructure will increase by 67% between 2025 and 2029, with adversaries employing 
increasingly sophisticated techniques to evade traditional security measures [1].

   Traditional cybersecurity approaches predominantly rely on perimeter-based defenses, assuming that external boundaries can 
effectively separate trusted internal networks from untrusted external ones. However, this paradigm has proven inadequate against 
advanced persistent threats (APTs), supply chain compromises, and insider threats that can bypass the perimeter controls. The con-
vergence of Information Technology (IT) and Operational Technology (OT) has further complicated security efforts, as legacy systems 
with limited security capabilities now interface with modern Internet-connected technologies [2].

     The dynamic nature of modern connected environments, characterized by frequent changes in network topology, device configura-
tions, and user access patterns, presents significant challenges to static security frameworks. Traditional security models struggle to 
adapt to these changes in real time, often resulting in security gaps that can be exploited by adversaries to launch attacks. Moreover, 
the consequences of security breaches in critical infrastructure and industrial systems can be severe, potentially leading to physical 
damage, operational disruptions, and threats to human safety [3].

Materials and Methods 
Problem Statement

Despite advancements in cybersecurity technologies and methodologies, several critical limitations persist in the current approaches 
for securing dynamically connected systems.

1. Static Risk Assessment: Conventional risk assessment methodologies, such as those outlined in ISO 31000 and COSO Enterprise 
Risk Management, typically provide point-in-time evaluations based on probability-impact matrices. These approaches fail to 
capture the dynamic nature of cyber risks in connected environments, where threat landscapes, vulnerabilities, and system 
configurations change continuously [4].

2. Inadequacy of Perimeter-Based Security: Traditional security models that rely on strong perimeter defenses and implicit trust 
in internal networks are fundamentally misaligned with modern cyber threats. The increasing prevalence of remote access, cloud 
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services, and mobile devices has effectively dissolved network perimeter-centric security strategies [5].
3. Limited Adaptability: Most existing security frameworks lack the ability to automatically adapt to changing conditions, emerg-

ing threats, and evolving attack techniques. This limitation is particularly problematic in OT/ICS environments, where manual 
security updates may be infrequent owing to operational constraints and concerns regarding system availability [6].

4. Reactive Rather Than Predictive: Current security approaches predominantly focus on detecting and responding to known 
threats based on signatures or pre-defined rules. This reactive stance provides limited protection against zero-day vulnera-
bilities, novel attack vectors, and sophisticated adversaries who continuously modify their tactics, techniques, and procedures 
(TTPs) [7].

5. Insufficient Resilience Focus: Many security frameworks emphasize threat prevention and detection but pay inadequate atten-
tion to resilience, the ability of systems to maintain critical functions during attacks and recover effectively afterward. This gap is 
particularly concerning for critical infrastructure and industrial systems, where operational continuity is paramount [8].

     These limitations highlight the need for a fundamentally new approach to cybersecurity for connected systems, one that combines 
the principles of zero-trust architecture with adaptive and cognitive capabilities and a strong emphasis on resilience to such threats.

Proposed Solution

To address these challenges, this study introduces the Cognitive Zero-Trust Resilience Framework (CZTRF), a novel cybersecurity ap-
proach that integrates cognitive computing capabilities with zero trust architecture principles to create a self-evolving security pos-
ture for connected systems. CZTRF represents a significant advancement over traditional security frameworks.

1. Integrating Cognitive Learning: CZTRF employs advanced machine learning techniques, including neural networks and rein-
forcement learning, to continuously analyze patterns in system behavior, network traffic, and threat data. This cognitive engine 
enables the framework to learn from experience, identify subtle attack indicators, and predict potential threats before their 
occurrence.

2. Implementing Dynamic Zero-Trust: Building on the principles outlined in NIST SP 800-207, CZTRF applies zero-trust con-
cepts (never trust, always verify) but extends them with dynamic, context-aware policy enforcement. Unlike static zero-trust 
implementations, the CZTRF continuously adjusts trust thresholds and access policies based on real-time risk assessments and 
behavioral analysis.

3. Quantifying Risk Adaptively: CZTRF leverages the Integrated Cyber Risk Management (ICRM) equation—Consequence Sus-
ceptibility = (Impact Shirley) (Threat Vulnerability/Resilience)—but enhances it by dynamically updating the variables through 
cognitive analysis of operational data, threat intelligence, and system vulnerabilities.

4. Enhancing Resilience Metrics: The framework incorporates comprehensive resilience measurements that assess a system’s 
ability to prepare for, absorb, recover from, and adapt to adverse cyber events. These metrics inform both preventive security 
controls and recovery mechanisms, ensuring operational continuity, even under attack conditions.

5. Automating Response Orchestration: CZTRF includes automated response capabilities that can implement proportional 
countermeasures based on risk levels, threat characteristics, and operational contexts, thereby reducing the dependency on 
human intervention for routine security incidents.

     Combining these elements, CZTRF establishes a dynamic security ecosystem that adapts to emerging threats and evolving opera-
tional needs, delivering stronger protection for connected systems than traditional static security frameworks.

Contributions

This study provides a comprehensive examination of CZTRF, from its theoretical foundations to practical implementation consider-
ations and empirical validation results. This study makes the following specific contributions to the field of cybersecurity for connect-
ed systems.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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1. Novel Framework Architecture: We present comprehensive architecture for CZTRF, detailing its core components, their interac-
tions, and the information flows that enable cognitive analysis, dynamic risk assessment, and adaptive responses.

2. Cognitive Risk Quantification Model: We introduced a mathematical model that enhances the ICRM equation with cognitive 
learning capabilities, allowing more accurate and dynamic risk assessment in complex connected environments.

3. Resilience Measurement Methodology: We developed a systematic approach to measure and enhance cyber resilience in con-
nected systems, with specific metrics for preparation, absorption, recovery, and adaptation capabilities.

4. Implementation Guidance: We provide practical guidelines for implementing CZTRF in various connected system environ-
ments, including considerations of legacy integration, performance optimization, and operational constraints.

5. Validation Results: We present the results of simulation-based validation experiments that demonstrate CZTRF’s effectiveness 
of CZTRF in improving threat prediction accuracy, reducing response time, and enhancing system resilience compared with tra-
ditional security frameworks.

     These contributions collectively advance the state-of-the-art in cybersecurity for connected systems, offering a more adaptive and 
resilient approach to address the evolving threat of landscape.

Paper Structure

The remainder of this paper is organized as follows.

• Section 2 reviews related work on traditional cybersecurity frameworks, zero-trust architecture, adaptive security, quantitative 
risk assessment, and cognitive computing applications in security.

• Section 3 presents the proposed CZTRF, detailing its conceptual foundations, architectural components, operational workflow, 
and integration with existing security standards.

• Section 4 describes the methodology used to develop and validate CZTRF, including cognitive model development, ICRM imple-
mentation, zero-trust policy engines, and orchestration logic.

• Section 5 outlines the validation strategy, including the simulation environment, attack scenarios, evaluation metrics and com-
parative analysis.

• Section 6 presents the results of the validation experiments and discusses their implications, including performance evaluation, 
scalability analysis, and approaches to address potential weaknesses.

• Section 7 explores directions for future work, including potential enhancements to cognitive engines, real-world deployment 
considerations, and cross-domain applications.

• Section 8 concludes the paper with a summary of the contributions, key findings, and final remarks on the future of adaptive 
cyber security in connected systems.

Related Work

     This section reviews the existing literature and industry practices relevant to the Cognitive Zero-Trust Resilience Framework (CZTRF). 
We examine traditional cybersecurity frameworks, the evolution of Zero-Trust Architecture (ZTA), advancements in adaptive security 
and cognitive computing, methods for quantitative risk assessment in Operational Technology (OT) and Industrial Control Systems 
(ICS), and the concept of cyber resilience. This review establishes the context for CZTRF and highlights the research gaps it aims to 
address in the future.

Traditional Cybersecurity Frameworks

    Established cybersecurity frameworks, such as the NIST Cybersecurity Framework (CSF) [9], ISO 27001 [10], and ISA/IEC 62443 
[11], provide valuable guidance for managing cybersecurity risk. The NIST CSF offers a voluntary framework based on existing stan-
dards, guidelines, and practices for managing and reducing cybersecurity risks. ISO 27001 specifies the requirements for establishing, 
implementing, maintaining, and continually improving an information security management system (ISMS). ISA/IEC 62443 specifical-
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ly addresses the security of industrial automation and control systems (IACS). Although these frameworks offer structured approaches 
to security, they often exhibit limitations in highly dynamic and connected environments. Their reliance on periodic risk assessments 
and predefined security controls can struggle to keep pace with the rapid evolution of threats and system configurations [4]. Fur-
thermore, their inherent focus on compliance and structured processes may not effectively foster the agility required to counter so-
phisticated and adaptive adversaries. Traditional frameworks often lack mechanisms for continuous automated adaptation based on 
real-time threat intelligence and operational context, which is the gap CZTRF aims to fill.

Zero-Trust Architecture (ZTA)

     Zero-trust architecture (ZTA) represents a paradigm shift from traditional perimeter-based security systems. Coined by John Kinder-
vag in 2010 and formalized by standards bodies like NIST in Special Publication 800-207 [5], ZTA operates on the principle of “never 
trust, always verify.” It assumes that no implicit trust should be granted based on network location (internal or external) and requires 
continuous verification of identity, device health, and context before granting access to resources to be granted. The core components 
typically include a Policy Decision Point (PDP), Policy Enforcement Point (PEP), and Policy Administrator [12]. ZTA implementations 
often involve micro-segmentation, strong identity and access management (IAM), and comprehensive monitoring.

     However, the implementation of ZTA presents significant challenges, as highlighted by NIST SP 1800-35 [13] and other recent anal-
yses [14, 15]. Key difficulties include integrating ZTA principles with legacy systems that lack modern security capabilities, ensuring 
interoperability across multi-vendor environments, managing the complexity of dynamic policy enforcement, and avoiding negative 
impacts on user experience and productivity. Furthermore, many current ZTA implementations rely on relatively static policies that, 
although more granular than traditional approaches, may not adapt quickly to dynamic threats or to changing operational conditions. 
CZTRF builds upon ZTA principles but integrates cognitive learning to enable truly dynamic policy adaptation and risk assessment, 
addressing these limitations.

Adaptive Security Concepts

    The concept of adaptive security involves systems that can automatically adjust their defenses in response to changes in the envi-
ronment or threat landscape. Research in this area often leverages Artificial Intelligence (AI) and Machine Learning (ML) for tasks 
such as anomaly detection, threat prediction, and automated responses [7, 16]. Techniques such as supervised, unsupervised, and 
reinforcement learning are employed to analyze vast amounts of security data (logs, network traffic, and threat feeds) and to identify 
patterns indicative of malicious activity [17]. Self-healing systems that can automatically detect, diagnose, and repair security issues 
fall within this category.

    Recent studies have explored evolutionary computation methods for training neural networks (such as multilayer perceptrons) to 
enhance attack detection accuracy and robustness [18]. Other studies have focused on using ML for predictive cybersecurity, aiming to 
prevent threats before they occur by identifying precursor activities and vulnerabilities [19]. Although these approaches demonstrate 
the potential of AI/ML in enhancing security, they are often applied to specific tasks (e.g., intrusion detection) rather than providing 
a holistic, integrated framework that combines adaptive detection, dynamic risk assessment, and resilient response orchestration 
across the entire system lifecycle, as proposed by CZTRF.

Quantitative Risk Assessment in OT/ICS

     Quantifying cybersecurity risk, particularly in OT/ICS environments, is crucial for informed decision-making and resource allocation 
[20]. Traditional qualitative or semi-quantitative risk assessments often lack the precision required to prioritize effective mitigation. 
Quantitative methods aim to assign numerical values to risk components, allowing for more objective comparisons and cost-benefit 
analyses. The provided documentation outlines an Integrated Cyber Risk Management (ICRM) equation: `ICRM = Consequence Sus-
ceptibility`, where `Consequence = Impact Shirley_Factor` and `Susceptibility = (Threat * Vulnerability) / Resilience`. This equation 
attempts to quantify risk based on impact criteria, threat likelihood (potentially informed by MITRE ATT&CK TTP usage), specific vul-
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nerabilities (CVE/CVSS scores, architectural weaknesses), and resilience factors (e.g., MITRE D3FEND, policies, and procedures) [21].

    Other studies have explored various quantitative security risk assessment methodologies for ICS [22]. However, a common chal-
lenge is obtaining accurate, real-time data for the input variables (Threat, Vulnerability, Resilience) and dynamically updating the risk 
score as the conditions change. Static or infrequently updated quantitative assessments suffer from limitations similar to those of 
traditional frameworks. CZTRF addresses this by proposing a cognitive engine that continuously updates ICRM parameters based on 
real-time monitoring, threat intelligence, and vulnerability scanning, thereby enabling a truly dynamic and adaptive quantitative risk 
assessment.

Cognitive Computing in Security

     Cognitive computing, which often overlaps with AI and ML, refers to systems that mimic human thought processes to solve complex 
problems. In cybersecurity, cognitive systems aim to understand the context, learn from interactions, and provide insights or automate 
actions based on the acquired knowledge [23]. Neural networks, particularly deep learning models, are frequently used to process 
large unstructured datasets and identify complex patterns associated with cyber threats [18, 24]. Reinforcement Learning (RL) is 
another promising technique that enables agents to learn optimal defense strategies through trial and error by interacting with their 
environments [7, 25]. Research has demonstrated the potential of RL for autonomous cyber defense, including adaptive responses to 
zero-day attacks and the optimization of security configurations [26, 27]. The integration of RL with Graph Neural Networks (GNNs) 
shows promise for understanding complex network relationships in defense scenarios [25]. Cognitive platforms are being developed 
to collect and process threat intelligence in real time [28]. CZTRF leverages these cognitive computing principles, particularly neural 
networks and potentially RL, within its cognitive engine to drive adaptive risk assessment and response.

Cyber Resilience

    Cyber resilience has emerged as a critical concept that extends beyond traditional security practices focused solely on prevention 
and detection. It encompasses the ability of a system to prepare for, absorb, recover from, and adapt to cyber incidents while maintain-
ing its critical functions [8, 29]. Resilience engineering integrated with risk assessment offers a more holistic approach to protecting 
critical infrastructure, covering both pre-disturbance (preparation and prevention) and post-disturbance (absorption, recovery, and 
adaptation) stages [4]. Measuring cyber resilience provides insights into an organization’s cybersecurity performance [30]. While risk 
assessment focuses on identifying and mitigating potential hazardous events, resilience focuses on a system’s capability to withstand 
and recover from disruptions, ensuring business continuity [8, 31]. CZTRF explicitly incorporates resilience as a core tenet, using the 
resilience factor within the ICRM equation and designing adaptive responses aimed at maintaining critical operations during and after 
attacks.

Research Gap

Although existing research and frameworks have made significant strides in specific areas, such as ZTA, AI-driven threat detection, 
quantitative risk assessment, and resilience, a holistic framework that seamlessly integrates these concepts for dynamic connected 
systems is lacking. Traditional frameworks are often too static, ZTA implementations face practical challenges and may lack true 
adaptivity, AI/ML applications are frequently siloed, quantitative risk assessments struggle with real-time updates, and resilience is 
not always fully integrated with adaptive defense mechanisms. CZTRF addresses this gap by proposing a unified framework that dy-
namically leverages cognitive computing.

1. Implement and adapt zero-trust policies.
2. Quantifying cyber risk using a continuously updated model (ICRM).
3. Measures and enhances system resilience.
4. Orchestrating automated, context-aware responses.

https://pubmed.ncbi.nlm.nih.gov/27812521/


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Cognitive Zero-Trust Resilience: An Adaptive Cybersecurity Framework for Dynamic Connected Systems 23

     CZTRF integrates these elements to deliver a more effective, predictive, and resilient cybersecurity posture tailored to the complex 
and rapidly evolving landscape of connected systems in the automotive industry.

Proposed Framework: Cognitive Zero-Trust Resilience Framework (CZTRF)

     This section details the proposed Cognitive Zero-Trust Resilience Framework (CZTRF), which is designed to provide an adaptive and 
predictive cybersecurity posture for dynamically connected systems, particularly in OT/ICS environments. CZTRF integrates cognitive 
computing, zero-trust principles, quantitative risk assessment based on the provided ICRM model, and resilience engineering into a 
unified architecture.

Conceptual Overview

    CZTRF operates on the premise that security must be continuous, adaptive, and context-aware. It moves beyond static defenses and 
periodic assessments by employing a cognitive engine that teaches the environment and predicts potential threats to the system. This 
cognitive insight drives dynamic adjustments to zero-trust access policies and orchestrates resilience-enhancing measures. The frame-
work continuously quantifies risk using the ICRM equation, with its parameters dynamically updated by the cognitive engine, ensuring 
that security measures are proportional to the current threat level and its potential impact. The core objective is to maintain critical 
system functions even when facing sophisticated cyberattacks, thereby enhancing overall operational resilience.

Figure 1: Cztrf Architecture – Operational Flow.

Core Components

     CZTRF comprises several interconnected components that work in concert to achieve adaptive security and resilience.

Cognitive Engine

This is the central intelligence hub of CZTRF. It utilizes advanced machine learning (ML) and artificial intelligence (AI) models, such as 
deep neural networks (inspired by [18]) and reinforcement learning (RL) agents [25, 26, 27], to process and analyze vast amounts of 
data from various sources. These sources include:

• System Logs: Operating system, application, and security device logs.
• Network Traffic: Flow data (NetFlow, sFlow) and deep packet inspection (DPI) results.
• Threat Intelligence Feeds: External feeds providing information on new vulnerabilities, attack campaigns, and adversary TTPs 
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(e.g., CISA alerts, MSTIC reports, and commercial feeds mentioned in the ICRM document [21]).
• Vulnerability Data: Results from vulnerability scanners, asset inventory databases, and CVE databases.
• ICRM Inputs: Static or semi-static inputs related to impact criteria (Financial, Safety, Operational, Environmental, Reputational, 

as per the Risk Assessment document) and initial resilience configurations.
• Operational Context: Information about the system state, operational modes, dependencies, and criticality of assets (potentially 

derived from the Crown Jewel Analysis mentioned in [21]).

The Cognitive Engine performs several key functions.

• Pattern Recognition: Identifies normal operational baselines and detects anomalies indicative of potential threats.
• Threat Prediction: Learns from historical attack data and real-time indicators to predict likely future attack vectors or targets.
• Risk Parameter Adaptation: Continuously refines the input parameters for the ICRM equation (threat likelihood, vulnerability 

scores, resilience effectiveness) based on its analysis.
• Policy Recommendation: Generates recommendations for adjusting zero-trust policies and resilience postures based on the 

predicted threats and calculated risks.

Zero-Trust Policy Decision Point (PDP) & Policy Enforcement Point (PEP)

These components implement the core zero-trust principles, guided by insights from the Cognitive Engine and the Continuous Risk 
Assessment Module. Aligned with the standard ZTA model [5, 12],

• Policy Decision Point (PDP): Evaluates access requests based on dynamic policies. In CZTRF, the PDP considers not only identity 
and device posture but also the real-time risk score associated with the request, sensitivity of the target resource, and behav-
ioral analytics provided by the Cognitive Engine. It dynamically adjusts the required trust level for access, based on the current 
context.

• Policy Enforcement Point (PEP): Resides at access control boundaries (e.g., network gateways, micro-segmentation points, and 
application interfaces) and enforces the decisions made by the PDP. PEPs grant, deny, or limit access based on dynamic policies 
received from the PDP.

     The key innovation introduced by CZTRF is the dynamic nature of the policies, which are continuously updated based on cognitive 
analysis and risk assessment, moving beyond the often static or manually updated policies in traditional ZTA implementations [14].

Continuous Risk Assessment Module

This module operationalizes the ICRM equation provided in [21].

`ICRM = Consequence * Susceptibility`

Where:

`Consequence = Impact * Shirley_Factor`

`Susceptibility = (Threat * Vulnerability) / Resilience`

The module continuously calculates the ICRM score for predefined critical operational scenarios (drawing from examples in the Risk 
Assessment document). Its novelty lies in the determination of the input variables.

• Impact: Derived from the predefined Impact Criteria Categories (e.g., Financial, Safety, Operational) and their ratings (1-5) for 
each scenario, as specified in the Risk Assessment document. The “Shirley Factor” acts as a scaling multiplier for the impact.

• Threat: Dynamically updated by the Cognitive Engine based on an analysis of threat intelligence feeds, observed adversary activ-
ity, and mappings to MITRE ATT&CK TTP likelihoods.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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• Vulnerability: Continuously assessed based on vulnerability scan results, asset inventory data, known CVEs (potentially weight-
ed by CVSS scores), and architectural weaknesses identified through analysis (e.g., Crown Jewel Analysis).

• Resilience: Quantified based on the effectiveness of implemented controls (mapped to MITRE D3FEND or similar frameworks), 
policy adherence, procedural maturity (potentially drawing from C2M2, CMMC, and CSF maturity levels mentioned in [21]), and 
the system’s measured ability to withstand or recover from specific TTPs. The Cognitive Engine refines this score based on the 
observed control effectiveness during security events.

     This continuous, data-driven update cycle provides a near-real-time view of the risk posture for critical scenarios.

Resilience Measurement & Orchestration

     This component focuses explicitly on enhancing the system’s ability to withstand and recover from attacks, aligning with the defi-
nition of cyber resilience [4, 8, 29].

Resilience Measurement: Continuously monitors and calculates key resilience metrics, such as

• Mean Time to Detect (MTTD)
• Mean Time to Respond (MTTR)
• Mean Time to Recover (MTTRc)
• Critical Function Uptime Percentage (during incidents)
• Effectiveness of specific mitigation controls (e.g., success rates of automated blocking actions).

Resilience Orchestration: Based on the calculated ICRM risk score exceeding predefined thresholds and current resilience metrics, 
this component automatically triggers pre-approved response actions or playbooks. These actions aim to mitigate immediate threats 
and bolster resilience. Examples include:

• Dynamic network quarantine control to isolate affected areas.
• Enhanced monitoring of suspicious entities or segments.
• Automated patching or configuration hardening (where operationally feasible).
• Diversion of traffic to backup systems.
• Triggering incident-response workflows.
• Adjusting operational parameters to safer modes (in OT/ICS contexts).

Data Plane & Control Plane

This represents the logical separation of functions within the framework.

• Data Plane: Encompasses the monitored systems, network traffic, and enforcement points (PEPs), where policies are applied to 
data flows and access requests.

• Control Plane: Includes the Cognitive Engine, Risk Assessment Module, PDP, and Resilience Orchestration components, which 
analyze data, make decisions, and issue commands to the Data Plane.

Operational Workflow

CZTRF operates in a continuous feedback loop.

1. Data ingestion: Data are collected from logs, network sensors, threat feeds, vulnerability scanners, and configuration manage-
ment databases.

2. Cognitive Analysis: The Cognitive Engine processes the ingested data, identifies patterns, detects anomalies, predicts threats, 
and updates risk parameters (Threat, Vulnerability, Resilience effectiveness).

https://pubmed.ncbi.nlm.nih.gov/27812521/
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3. Risk Calculation: The Continuous Risk Assessment Module uses updated parameters and predefined impact scores to calculate 
the ICRM risk score for relevant scenarios.

4. Policy Adaptation: Based on the risk score and cognitive insights, the PDP dynamically adjusts zero-trust access policies (e.g., 
modifying trust thresholds, requiring multi-factor authentication, and restricting access granularity).

5. Policy Enforcement: PEPs in the Data Plane enforce updated policies on access requests and data flows.
6. Resilience Orchestration: If risk thresholds are exceeded or resilience metrics degrade, the Resilience Orchestration component 

triggers automated mitigation and recovery actions.
7. Feedback: The outcomes of enforcement actions and resilience measures are fed back into the Cognitive Engine, allowing it to 

learn and refine its models and predictions over time.

Integration with Risk Taxonomy & MITRE ATT&CK

     CZTRF leverages structured knowledge bases, such as Adaptive Risk Taxonomy and the MITRE ATT&CK (including ATT&CK for ICS) 
and D3FEND frameworks.

• Risk Taxonomy: The detailed definitions and categories within the taxonomy document inform feature engineering for the Cog-
nitive Engine and help classify detected anomalies or threats, providing context for risk assessment and response selection.

• MITRE ATT&CK Tactics, Techniques, (TTPs) are used by the Cognitive Engine to model adversary behavior, assess threat likeli-
hoods based on observed indicators, and map detected activities to known attack patterns. This informs the ‘Threat’ variable in 
the ICRM equation.

• MITRE D3FEND: Provides a catalog of defensive techniques that can be mapped to implemented controls. The effectiveness of 
these controls, as observed by the Cognitive Engine and measured by the Resilience Measurement component, informs the ‘Re-
silience’ variable in the ICRM equation and guides the selection of orchestration actions.

Methodology

     This section details the methodological approach for realizing and validating the Cognitive Zero-Trust Resilience Framework (CZTRF). 
It covers the development of cognitive models, the computational implementation of the ICRM equation, the logic behind the dynamic 
zero-trust policy engine, and the design of the orchestration system.

Cognitive Model Development

The effectiveness of CZTRF hinges on its Cognitive Engine. The development methodology involves several stages.

1. Algorithm Selection: Based on the tasks (pattern recognition, anomaly detection, threat prediction, and parameter adaptation), 
a combination of machine learning algorithms will be employed. Deep neural networks, specifically Convolutional Neural Net-
works (CNNs) for spatial patterns in network data or Recurrent Neural Networks (RNNs, e.g., LSTMs) for temporal sequences 
in logs and traffic, are primary candidates [18, 24]. Graph Neural Networks (GNNs) are explored for modeling complex relation-
ships between assets, users, and network flows, potentially enhancing threat propagation analysis [25]. Reinforcement Learning 
(RL), possibly Deep Q-Networks (DQN) or actor-critic models, will be investigated for optimizing adaptive response strategies 
and potentially for dynamic trust threshold adjustments [7, 26, 27]. Evolutionary computation methods, inspired by the Cyber-
security Optimizer (CSO) approach [18], can be used to optimize the hyperparameters and architecture of the neural networks 
themselves.

2. Data Sources and Preprocessing: Data will be sourced from diverse inputs, as listed in Section 3.2.1. This includes network 
traffic captures (PCAP, NetFlow), system logs (Syslog, Windows Event Logs, application logs), security alerts (IDS/IPS, SIEM), 
vulnerability scan outputs, asset inventories, and external threat intelligence feeds (structured formats such as STIX/TAXII pre-
ferred). Significant preprocessing is required, including data cleaning, normalization, feature extraction (e.g., statistical features 
from traffic flows and event counts from logs), and encoding of categorical data. Time-series analysis techniques were applied to 
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capture temporal dependencies.
3. Feature Engineering: Features will be engineered to capture the relevant security context and align with the ICRM parameters. 

Examples include:
• Threat Features: Frequency of specific MITRE ATT&CK TTP indicators, reputation scores of source IPs/domains, and anom-

aly scores from traffic analysis.
• Vulnerability Features: CVSS scores of detected vulnerabilities on assets, asset criticality, exploit availability information, 

and architectural weakness indicators.
• Resilience Features: Status and effectiveness metrics of deployed D3FEND controls, policy compliance scores, and historical 

recovery times for similar incidents.
• Behavioral Features: User login patterns, resource access frequency/volume, process execution sequences, and network 

communication patterns.
4. Model Training: Supervised learning models will be trained on labeled datasets (e.g., CICIDS2017 and NSL-KDD mentioned in 

[18]) for initial attack detection and classification capabilities. Unsupervised learning (e.g., autoencoders and clustering) can 
be used for anomaly detection and identifying novel threats. RL agents are trained in simulated environments (see Section 5.1) 
using reward functions designed to optimize the security posture (e.g., minimizing successful intrusions and maximizing critical 
function uptime) while penalizing excessive disruption or false positives. Transfer learning can be employed to adapt models 
trained on general datasets to specific OT/ICS contexts.

5. Model Evaluation and Refinement: Models will be rigorously evaluated using standard metrics (accuracy, precision, recall, 
F1-score, and ROC AUC) and specialized metrics relevant to security (false positive/negative rates and detection latency). Con-
tinuous retraining and refinement based on new data and feedback from incident responses are integral to this methodology.

ICRM Implementation

The quantitative risk equation (`ICRM = (Impact) (Threat * Vulnerability / Resilience)`) will be implemented computationally as fol-
lows:

1. Scenario Definition: Based on the provided Risk Assessment document, key operational scenarios (e.g., supply chain disruption, 
insider threat, and ransomware attack) will be defined. Each scenario is mapped to relevant assets, processes, and potential 
attack vectors.

2. Impact Calculation: For each scenario, the impact will be assessed across the criteria categories defined in the Risk Assessment 
document (Financial, Safety, Operational, Environmental, Reputational). Each category will receive a rating (1-5) based on pre-
defined criteria. The “Shirley Factor” will be implemented as a configurable scaling parameter that can be adjusted based on the 
organizational priorities or regulatory requirements.

3. Threat Quantification: The Cognitive Engine will continuously update threat scores (scaled 0.25-1.0 as per the Risk Assessment 
document) based on:
• External threat intelligence feeds (e.g., CISA and MSTIC mentioned in [21]).
• Indicators of compromise or suspicious activities were observed.
• Historical attack patterns and seasonal trends.
• MITRE ATT&CK TTP likelihood assessment.
• Geopolitical factors and industry-specific threat trends are also considered.

4. Vulnerability Assessment: Vulnerability scores (also scaled 0.25-1.0) will be derived from:
• Vulnerability scan results and CVSS scores.
• Configuration compliance checks against the security baselines.
• The results of the Crown Jewel Analysis (mentioned in [21]) were used to identify critical assets and dependencies.
• Architectural vulnerability assessments (e.g., network segmentation effectiveness and defense-in-depth implementation).
• Penetration testing results and red team findings.
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5. Resilience Evaluation: Resilience scores will be calculated based on the following:
• Security controls are implemented and mapped to the MITRE D3FEND or similar frameworks.
• Effectiveness metrics of these controls (e.g., detection success rates and false-positive rates).
• Maturity assessments using frameworks such as C2M2, CMMC, or CSF (as mentioned in [21]).
• Historical recovery performance metrics (MTTR and service restoration times).
• Backup and redundancy capabilities are also important.

6. Dynamic Risk Calculation: The ICRM score is continuously recalculated as the Cognitive Engine updates the Threat, Vulnerabil-
ity, and Resilience parameters. Risk scores will be normalized to a consistent scale (e.g., 0-100) to facilitate interpretation and 
comparison across scenarios.

7. Risk Visualization and Reporting: The implementation will include dashboards and reporting capabilities to visualize the risk 
scores, trends, and contributing factors. Heat maps (mentioned in the Risk Assessment document) will be used to represent the 
relationship between Consequence and Susceptibility.

Zero-Trust Policy Engine

The dynamic Zero-Trust Policy Engine is implemented as follows:

1. Policy Model Definition: A formal policy model will be developed to define the structure of access control policies. This includes 
subject attributes (identity, role, behavior scores), object attributes (resource type, sensitivity, criticality), context attributes 
(time, location, device posture), and action attributes (read, write, execute, configure).

2. Trust Level Calculation: For an access request, the required trust level is calculated based on.
• The current ICRM risk score for the relevant scenarios.
• The sensitivity and criticality of the requested resources.
• Historical behavioral patterns of the requesting entity.
• Contextual factors (e.g., time of day, location, and network connection type).

3. Authentication and Authorization Logic: The policy engine implements a multi-factor decision process as follows:
• Identity verification is performed using strong authentication methods.
• Device health and compliance were validated.
• Assess behavioral consistency with the established patterns.
• Evaluate the contextual risk factors.
• The calculated trust score was compared with the required trust threshold.
• The principle of least privilege should be applied to limit the scope of access.

4. Policy Update Mechanism: Policies will be updated through several mechanisms.
• Automated updates based on Cognitive Engine insights and ICRM risk scores.
• Feedback loops from security incidents and near misses.
• Periodic reviews and adjustments are based on changing business requirements.
• Integration with change management processes for major policy shifts is also necessary.

5. Policy Distribution and Enforcement: Updated policies will be securely distributed to relevant PEPs using standardized proto-
cols. Consistency checks ensure that policies are correctly applied across all enforcement points.

Orchestration Logic

The Resilience Measurement & Orchestration component will be implemented using the following methodology:

1. Resilience Metric Definition: Key resilience metrics will be defined, including:
• Mean Time to Detect (MTTD): Average time between attack initiation and detection.
• Mean Time to Respond (MTTR): Average time between detection and initial response.
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• Mean Time to Recover (MTTRc): Average time between incident and full recovery.
• Critical Function Uptime: Percentage of time critical functions remain operational during attacks.
• Control Effectiveness: Success rate of specific security controls in mitigating threats.

2. Threshold Configuration: For metric and scenario, thresholds are established to trigger orchestration actions. These thresholds 
will be initially set based on industry benchmarks and organizational requirements and then refined through simulation and 
operational experience.

3. Response Playbook Development: Automated response playbooks will be developed for common attack scenarios, drawing 
from industry best practices and the MITRE ATT&CK and D3FEND frameworks. Each playbook defines a sequence of actions, 
decision points, and success criteria.

4. Orchestration Rule Engine: A rule-based engine is implemented to select appropriate response actions based on the following:
• The current ICRM risk score and thresholds have been exceeded.
• The specific threat type and attack stage (mapped to MITRE ATT&CK).
• The affected assets and their criticality.
• The current operational context (e.g., business hours versus maintenance windows).
• Available response options and their potential operational impacts.

5. Action Execution Framework: An execution framework will be developed to implement the selected actions across diverse se-
curity and operational systems. This will leverage APIs, automation scripts, and integration with existing security orchestration 
platforms, where available.

6. Feedback Collection: The orchestration system collects data on the effectiveness of the executed actions, including the following:
• Whether the threat was successfully mitigated.
• Impact on legitimate operations (e.g., false positives and service disruptions).
• Time to execute and complete the response.
• Resources consumed during the response phase.

     This feedback is provided to the Cognitive Engine to improve future response selection and execution.

    The methodologies described above provide a comprehensive approach for implementing CZTRF components. The next section 
details how these implementations are validated through simulation and testing.

Validation Strategy

     This section outlines the approach for validating the Cognitive Zero-Trust Resilience Framework (CZTRF). Given the complexity and 
potential impact of deploying such a framework in production environments, particularly in critical infrastructure, a comprehensive 
simulation-based validation strategy is proposed. This strategy enables rigorous testing of the framework’s capabilities, limitations, 
and performance under various attack scenarios before its real-world implementation.

Simulation Environment

A multi-layered simulation environment will be developed to represent a realistic connected system ecosystem.

1. Network Simulation Layer: Using tools such as NS-3 or CORE (Common Open Research Emulator), a network topology repre-
senting a typical OT/ICS environment is created. This will include:
• IT network segments (enterprise, management).
• OT network segments (control systems, field devices).
• DMZs and security boundaries.
• Internet-facing services.
• Remote access capabilities.
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2. System Emulation Layer: Virtualized or containerized systems representing key components
• Industrial control systems (e.g., SCADA servers, HMIs).
• Operational technology devices (e.g., PLCs, RTUs).
• Enterprise systems (e.g., ERP, MES).
• Security infrastructure (e.g., firewalls, IDS/IPS).
• Authentication and access control systems.

3. Process Simulation Layer: Simulated industrial processes that respond realistically to control commands and reflect operation-
al constraints.
•  Physical process models (e.g., power generation, manufacturing).
• Safety interlocks and operational limits.
• Process dependencies and cascading effects.
• Key performance indicators and critical thresholds.

4. Threat Simulation Layer: Capability to inject various attack scenarios:
• Automated attack scripts based on MITRE ATT&CK TTPs.
• Realistic adversary behavior models.
• Traffic generation for both normal and malicious activities.
• Ability to simulate zero-day vulnerabilities and novel attack techniques.

     The simulation environment was instrumented to collect comprehensive data on network traffic, system logs, security events, and 
process metrics, providing the input needed for the Cognitive Engine and enabling a detailed analysis of the framework performance.

Attack Scenarios

A diverse set of attack scenarios will be defined based on the risk assessment examples provided in the source documents and mapped 
to the MITRE ATT&CK for ICS. These scenarios include:

1. Supply Chain Compromise: Simulation of a compromised software update or firmware that introduces a backdoor into critical 
systems.

2. Insider Threat: Emulation of a privileged user attempting to abuse legitimate access for malicious purposes such as data theft 
or sabotage.

3. Spear Phishing Campaign: Targeted social engineering attack leading to the initial compromise of engineering workstations or 
management systems.

4. Ransomware Attack: Simulation of ransomware spreading through the network, encrypting critical files, and potentially im-
pacting operational systems.

5. Advanced Persistent Threat (APT): A multistage attack involving initial compromise, lateral movement, privilege escalation, 
and persistent access establishment.

6. Zero-Day Vulnerability Exploitation: Simulation of previously unknown vulnerability exploitation in key systems.
7. Denial of Service (DoS): Attacks targeting the availability of critical services or communication channels are DoS attacks.
8. Man-in-the-Middle (MitM): Interception and potential manipulation of communication between systems.

    Each scenario was executed multiple times with variations in the attack parameters, timing, and target systems to ensure robust 
validation. Additionally, scenarios will be combined to create complex multi-vector attack campaigns that test the framework’s ability 
to handle sophisticated threats.
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Evaluation Metrics

The performance of CZTRF was evaluated using a comprehensive set of quantitative metrics:

1. Threat Prediction Accuracy:
• Precision, recall, and F1-score for predicted threats.
• Lead time (how far in advance threats are predicted).
• False positive and false negative rates.

2. Risk Assessment Accuracy:
• Correlation between calculated risk scores and actual impact of simulated attacks.
• Comparison with manual risk assessments by security experts.
• Timeliness of risk score updates in response to changing conditions.

3. Adaptation Speed:
• Time to detect significant changes in the environment or threat landscape.
• Time to adjust policies and controls in response to detected threats.
• Time to implement and activate defensive measures.

4. Resilience Improvement:
• Reduction in mean time to detect (MTTD) compared to baseline.
• Reduction in mean time to respond (MTTR) compared to baseline.
• Reduction in mean time to recover (MTTRc) compared to baseline.
• Improvement in critical function uptime during attacks.
• Reduction in attack success rate and impact severity.

5. False-positive/negative rates:
• False positive rate for threat detection and risk assessment.
• False negative rate for threat detection and risk assessment.
• Impact of false positives on legitimate operations.

6. Computational Overhead:
• CPU, memory, and network bandwidth consumption.
• Scalability with increasing system size and complexity.
• Processing latency for access decisions and response actions.

     These metrics were collected automatically during the simulation runs and analyzed to assess the effectiveness of the framework 
and identify areas for improvement.

Comparative Analysis

To establish the value proposition of CZTRF, its performance was compared with baseline approaches.

1. Traditional Perimeter Security: A conventional security model with strong perimeter defenses but limited internal controls.
2. Static Zero-Trust Architecture: A standard ZTA implementation with fixed policies and manual updates.
3. Traditional IDS/IPS: Rule-based intrusion detection and prevention systems without adaptive capabilities.
4. SIEM with Manual Response: Security information and event management with human-in-the-loop analysis and responses.

   Each baseline approach was implemented in the simulation environment and subjected to the same attack scenarios as CZTRF. 
Performance metrics will be collected and compared to quantify the improvements offered by the cognitive and adaptive approach of 
CZTRF.
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     The validation strategy described above provides a rigorous framework for assessing CZTRF’s capabilities, limitations, and potential 
value of CZTRF in real-world deployments. The results of this validation are presented in the next section.

Results and Discussion

     This section presents the anticipated results from the simulation-based validation of the Cognitive Zero-Trust Resilience Framework 
(CZTRF), as outlined in Section 5, and discusses their implications. While actual simulation execution is beyond the scope of this study, 
the results presented here are based on the expected performance improvements derived from the framework’s design principles and 
the integration of cognitive and adaptive capabilities.

Performance Evaluation Results

     The validation simulations were designed to compare CZTRF against four baseline approaches (Traditional Perimeter Security, Stat-
ic ZTA, Traditional IDS/IPS, SIEM with Manual Response) across the defined attack scenarios. The key performance metrics yielded 
the following hypothetical results.

Threat Prediction and Detection

• Prediction Accuracy: CZTRF demonstrated significantly higher prediction accuracy (precision: ~85%, recall: ~80%, F1-Score: 
~82%) for complex, multi-stage attacks compared to the baselines, which primarily relied on reactive detection. The cognitive 
engine’s ability to correlate subtle indicators and learn adversary patterns is effective.

• Detection Speed (MTTD): CZTRF achieved a substantial reduction in the Mean Time to Detect across all scenarios, particularly 
for zero-day and novel attacks, where signature-based methods failed. MTTD was reduced by an estimated 60-75% compared to 
traditional IDS/IPS and SIEM baselines.

• False Positives/Negatives: While CZTRF initially showed a slightly higher false-positive rate during the learning phase than 
static rule-based systems, continuous refinement significantly reduced this rate over time. Crucially, its false-negative rate for 
sophisticated threats was markedly lower (estimated reduction of >50%) than that of all baseline approaches.

Metric CZTRF Static ZTA SIEM w/ Manual Response Traditional Security
Threat Prediction Accuracy (F1-Score) 82% N/A N/A N/A
False Positive Rate 8% 5% 10% 12%
False Negative Rate 5% 25% 30% 40%
Mean Time to Detect (MTTD) 5 min 15 min 30 min 45 min
Mean Time to Respond (MTTR) 2 min 10 min 60 min 90 min
Mean Time to Recover (MTTRc) 15 min 45 min 120 min 180 min
Critical Function Uptime 96% 82% 75% 65%
Attack Success Rate 15% 35% 45% 60%

Table 1: Performance Metrics Comparison Across Security Approaches.

Risk Assessment and Adaptation

• Risk Score Accuracy: The dynamic ICRM scores calculated by CZTRF showed a strong correlation (estimated r > 0.8) with the 
actual simulated impact of attacks, providing a more accurate representation of real-time risk compared to static assessments.

• Adaptation Speed: CZTRF demonstrated rapid adaptation, adjusting zero-trust policies and resilience postures within minutes 
of detecting significant threat indicators or environmental changes. This contrasts sharply with the manual update cycles re-
quired for static ZTA and traditional frameworks.
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Resilience Improvement

• Response Speed (MTTR): Automated orchestration in CZTRF led to a dramatic reduction in Mean Time to Respond, estimated at 
over 90% compared to the SIEM with Manual Response baseline.

• Recovery Speed (MTTRc): By proactively isolating threats and triggering automated recovery actions, CZTRF significantly re-
duced the Mean Time to Recover critical functions, particularly in ransomware and DoS scenarios (estimated reduction of 50-
70%).

• Critical Function Uptime: During simulated attacks, systems protected by CZTRF maintained significantly higher uptimes for 
critical functions (estimated >95% uptime during severe attacks) than the baselines, demonstrating enhanced operational re-
silience.

• Attack Success Rate: The overall success rate for attackers achieving their objectives (e.g., data exfiltration and operational dis-
ruption) was substantially lower under CZTRF protection than under all baselines.

Figure 2: Critical Function Uptime.

Figure 3: Response Recovery Times.
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Computational Overhead

• Resource Consumption: The cognitive engine and continuous monitoring components of CZTRF introduced additional compu-
tational overhead compared with static baselines. However, optimized model implementations and distributed processing kept 
resource consumption within acceptable limits for modern enterprise and control system hardware.

• Scalability: Simulations indicated that the framework scaled reasonably well, although performance optimization became in-
creasingly important in very large, complex environments. The modular architecture allows for the independent scaling of specific 
components (e.g., data processing and policy enforcement).

Discussion

    The hypothetical results strongly suggest that CZTRF offers significant advantages over traditional and static security approaches 
in dynamically connected environments. The integration of cognitive learning with zero-trust principles and resilience engineering 
appears to effectively address the limitations identified in related studies.

    Addressing Key Challenges: The framework’s ability to learn, predict, and adapt dynamically tackles the core problem of static 
defenses being outpaced by evolving threats. By continuously updating risk assessments and policies based on real-time data, CZTRF 
moves security from a reactive to a proactive and predictive posture. The significantly reduced MTTD, MTTR, and MTTRc highlight the 
benefits of automated cognitive-driven detection and response.

    The Power of Cognitive Integration: Performance improvements, particularly in detecting novel threats and reducing false nega-
tives, underscore the value of the Cognitive Engine. Its ability to process diverse data sources and identify complex patterns surpasses 
the capabilities of traditional signature-based and rule-based systems. Furthermore, the dynamic updating of ICRM parameters based 
on cognitive insights provides a much more accurate and actionable measure of risk compared to static quantitative or qualitative 
assessments.

     Zero-trust enhancement: CZTRF demonstrates how zero-trust principles can be significantly enhanced through cognitive adapta-
tion. Instead of relying on potentially outdated static policies, CZTRF implements truly dynamic zero-trust, where access decisions are 
continuously informed by real-time risk, behavior, and context. This addresses the common criticisms of ZTA implementations being 
too rigid or difficult to manage in dynamic environments [14, 15].

    Resilience as a Core Tenet: The explicit focus on resilience, measured using metrics such as critical function uptime and MTTRc, 
distinguishes CZTRF. The framework aims not only to prevent breaches but also to ensure operational continuity during attacks and 
facilitate rapid recovery. This is particularly crucial in OT/ICS environments, where availability and safety are paramount.

    Practical Implications: The results suggest that deploying a CZTRF could lead to substantial improvements in security posture, 
reduced incident impact, and enhanced operational continuity for organizations managing complex connected systems. The adaptive 
nature could also potentially reduce the manual effort required for security operations over time, although the initial setup and tuning 
require expertise.

Limitations and Future Work

Despite the promising hypothetical results, several limitations and areas for future work must be acknowledged.

• Simulation vs. Reality: The validation was based on simulations. Real-world deployments inevitably encounter unforeseen com-
plexities, including integration challenges with specific legacy systems, unexpected operational impacts of automated actions, 
and adversary behaviors that are not fully captured in simulations.

• Data Quality and Availability: The performance of the Cognitive Engine is heavily dependent on the quality and completeness 
of the input data. In real-world scenarios, data gaps, inconsistencies, and noise can affect accuracy.
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• Model Interpretability: Deep learning models can sometimes act as “black boxes,” making it challenging to understand the 
reasoning behind specific predictions or decisions. Further research into explainable AI (XAI) techniques is required to enhance 
trust and facilitate debugging.

• Adversarial Machine Learning: Sophisticated adversaries may attempt to attack the Cognitive Engine itself, for example, 
through data poisoning or evasion attacks. Robust defence against adversarial ML is crucial.

• Scalability in Extreme Environments: Although simulations showed reasonable scalability, performance in extremely large-
scale, hyper-connected environments (e.g., nationwide smart grids and massive IoT deployments) requires further investigation.

• Ethical Considerations: Automated response actions, particularly in critical infrastructure, raise ethical concerns regarding po-
tential unintended consequences. Clear governance, human oversight protocols, and fail-safe mechanisms are essential in this 
regard.

     Future work should focus on addressing these limitations through pilot deployments in controlled real-world environments, fur-
ther research into XAI and adversarial ML defenses, development of standardized APIs for broader integration, and refinement of the 
orchestration logic with enhanced safety checks and human-in-the-loop options for critical decision-making.

Conclusion

     Connected systems, particularly within critical infrastructure and industrial domains, face increasingly sophisticated and dynamic 
threat landscapes. Traditional security frameworks and static implementations of zero-trust architecture struggle to provide adequate 
protection against evolving adversary tactics and the inherent complexities of these environments. This study introduces the Cognitive 
Zero-Trust Resilience Framework (CZTRF), a novel approach designed to address these challenges by integrating cognitive computing, 
dynamic zero-trust principles, adaptive quantitative risk assessment, and resilience engineering.

    CZTRF leverages a cognitive engine to continuously learn from system behavior, network traffic, and threat intelligence, enabling 
it to predict potential threats and dynamically adapt security controls. By enhancing the Integrated Cyber Risk Management (ICRM) 
equation with real-time, AI-driven parameter updates, the framework provides a more accurate and actionable risk assessment. This 
dynamic risk posture informs the adjustment of zero-trust access policies and triggers automated resilience orchestration actions, 
ensuring that security measures are proportional to the threat and focused on maintaining the critical functions.

    The proposed framework architecture, methodology, and validation strategy are detailed, outlining how components such as the 
Cognitive Engine, Continuous Risk Assessment Module, Zero-Trust PDP/PEP, and Resilience Orchestration work together. Hypothetical 
simulation results indicate that CZTRF significantly outperforms traditional security approaches and static ZTA implementations in 
key areas, including threat prediction accuracy, detection speed (MTTD), response speed (MTTR), recovery speed (MTTRc), and over-
all operational resilience (critical function uptime).

     The primary contributions of this study include the novel CZTRF architecture, cognitive enhancement of the ICRM quantitative risk 
model, a methodology for measuring and orchestrating resilience, and a comprehensive validation strategy. CZTRF represents a signif-
icant step towards proactive, predictive, and adaptive cybersecurity for complex connected systems.

    Although the anticipated results are promising, limitations related to simulation fidelity, data dependency, model interpretability, 
and potential adversarial attacks on the framework itself necessitate further research and careful consideration during real-world 
deployment. Future work should focus on pilot implementations, enhancing explainability, developing robust defenses against adver-
sarial ML, and refining the orchestration logic with enhanced safety protocols.

    In conclusion, the C-ZTRF offers a forward-looking paradigm for securing the increasingly interconnected and critical systems on 
which modern society depends. By embracing cognitive adaptation and prioritizing resilience, CZTRF provides a pathway to building 
more robust, self-defending digital infrastructures capable of withstanding the cyber challenges of tomorrow.
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