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Abstract

    This paper rigorously and concisely defines, in the context of our (Elementary) Mathemati-
cal Data Model ((E)MDM), the mathematical concepts of self-map, composite mapping, totality, 
one-to-oneness, non-primeness, ontoness, bijectivity, default value, (null-)reflexivity, irreflex-
ivity, (null-)symmetry, asymmetry, (null-)idempotency, anti-idempotency, (null-)equivalence, 
acyclicity, (null-)representative system mapping, the properties that relate them, and the corre-
sponding corollaries on the coherence and minimality of sets made of such mapping properties 
viewed as database constraints. Its main contribution is the pseudocode algorithm used by Mat-
Base, our intelligent database management system prototype based on both (E)MDM, the rela-
tional, and the entity-relationship data models, for enforcing self-map, atomic, and composite 
mapping constraint sets. We prove that this algorithm guarantees the satisfiability, coherence, 
and minimality of such sets, while being very fast, solid, complete, and minimal. In the sequel, 
we also presented the relevant MatBase user interface as well as the tables of its metacatalog 
used by this algorithm. 

Keywords: self-map properties; satisfiability; coherence, and minimality of constraint sets; (El-
ementary) Mathematical Data Model; MatBase; db and db software application design

Abbreviations

DBMS = Database Management System. 
db(s) = database(s). 
(E)MDM = (Elementary) Mathematical Data Model. 
E-R = Entity-Relationship. 
iff = if and only if.
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Introduction

    We presented in [1] the current version of our (Elementary) Mathematical Data Model ((E)MDM). Out of its 76 constraint types, 
there are 6 pertaining to all mappings, namely totality, one-to-oneness, non-primeness, ontoness, bijectivity, and default value, and 
14 pertaining only to self-maps, which are particular cases of dyadic relations [2]: (null-)reflexivity, irreflexivity, (null-)symmetry, 
asymmetry, (null-)idempotency, anti-idempotency, (null-)equivalence, (null-)representative system mapping, and acyclicity. As usual 
in mathematics, some of them or some combinations of them imply others, while some of them are mutually exclusive. This is why any 
intelligent Database Management System (DBMS) must accept only satisfiable, coherent, and, for optimality concerns, also minimal 
sets of constraints.

     MatBase [3] is our intelligent DBMS prototype, based on both (E)MDM, the Entity-Relationship (E-R) Data Model [4, 5, 6], the Rela-
tional Data Model [6, 7, 8], and Datalog¬ [8, 9], currently implemented in two MS platforms: Access (for small dbs and undergraduate 
students) and .NET C# and SQL Server (for large dbs and MSc. students). Its (E)MDM interface provides users with a form (see, e.g., 
Figure 1) in which all metadata [10] for any mapping of a database (db) it manages may be inspected and updated. Please note that, 
for composite mappings (e.g., the self-map State ° StateCapital from Figure 1), the FUNCTIONS sub-form (which manages all mappings 
defined on the current set) has a subform that manages the corresponding member mappings (e.g., State : CITIES → STATES and State-
Capital : STATES ↔ CITIES from Figure 1).

Figure 1: MS Access MatBase form for managing db sets’ schema.

     In particular, for self-maps users may assert or delete their properties by simply clicking on the corresponding checkboxes from the 
Functions tab. Immediately after each such click, MatBase analyzes the new desired such constraint set and undoes the update if it is 
invalid (e.g., the current function is not a self-map one, or the corresponding constraint set would be incoherent, or the user tried to 
delete a redundant constraint, or the current db instance does not satisfy the newly desired constraint set, etc.). If the update is valid, 
then MatBase not only accepts it, but also automatically updates the subset of corresponding redundant constraints and generates or 
deletes the code needed to enforce the newly desired mapping type constraint set. 

     This paper describes the math behind this process, as well as the metadata and algorithm that MatBase uses to perform these tasks. 
Of course, that 17 of these 20 constraint types are non-relational, i.e., they may not be enforced by any relational DBMS (e.g., MS SQL 
Server, Oracle Database, IBM DB2, etc.): the only relational ones are totality (NOT NULL), one-to-one-ness (UNIQUE), and default val-
ues (DEFAULT). Consequently, the 17 non-relational ones should be enforced by db software applications managing the corresponding 
relational dbs. MatBase automatically generates such software applications for every db it manages.
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Related work

     MatBase‘s constraint sets coherence and minimality enforcement algorithms were generally presented at a higher conceptual level 
in [11]. First, [11] deals with all (E)MDM constraint types (which were only 61 at that time); then, it does not address the particular-
ities of self-maps, which are cases of dyadic relations (which are cases of homogeneous binary function products (i.e., of type f • g : D 
→ (C ∪ NULLS)2, where NULLS is a distinguished countable set of null values), for which the first canonical Cartesian projection is the 
unity function of the corresponding domain (i.e., of type 1D: D → D, 1D(x) = x, ∀x∈D) and the second one is the functional dyadic relation, 
which might not be totally defined (i.e., it may take null values as well, f: D → (D ∪ NULLS)). Moreover, [11] does not deal either with 
rejecting sets of constraint types that would duplicate the unity mappings of the corresponding object sets.

     Deeper details on self-maps (autofunctions) enforcement in MatBase were presented in [12, 13].

     Proofs of the mathematical results presented in the next section may be found, e.g., in [9, 14]. 

   (E)MDM is also a 5th generation programming language [15, 16] and MatBase is also a tool for transparent programming while 
modeling data at conceptual levels [3].

    To our knowledge, the other most closely related approaches to non-relational constraint enforcement are based on business rules 
management (BRM) [17, 18] and their corresponding implemented systems (BRMS) and process managers (BPM), like the IBM Op-
erational Decision Manager [19], IBM Business Process Manager [20], Red Hat Decision Manager [21], Agiloft Custom Workflow/
BPM [22], etc. They are generally based on XML (but also on the Z notation, Business Process Execution Language, Business Process 
Modeling Notation, Decision Model and Notation, or the Semantics of Business Vocabulary and Business Rules), which is the only oth-
er field of endeavor trying to systematically deal with business rules, even if informally, not at the db design level but at the software 
application one, and without providing automatic code generation.

     From this perspective, (E)MDM is also a BRM but a formal one, and MatBase is also a BRMS but an automatically code generating one.

     The satisfiability, coherence, and minimality of first order predicate formulae sets has been extensively studied mathematically (e.g., 
[23]) but not in the db contexts, as there are only six relational constraint types (for which any combination is coherent), out of which 
NoSQL DBMSes only use 2 or 3.

Materials and Methods

     The following definitions, propositions, and corollaries are from Appendix A (“The Math Behind (E)MDM”) of [9]. The propositions 
are from its subsections A.3.2.2 (“Self-maps”) and A.3.2.3 (“Partially defined self-maps”), while the corollaries are from its section A.6 
(“Coherence and Minimality of Mapping Constraint Sets”).

Definitions

0. a. A relation R is a subset of a Cartesian product of n sets (not necessarily distinct), n > 1, natural: R ⊆ S1 × … × Sn.
b. A dyadic relation R is a subset of a binary Cartesian product of a set S with itself: R ⊆ S × S.
c. A dyadic relation R is left unique iff ∀x1, x2, y ∈ S, x1Ry ∧ x2Ry ⇒ x1 = x2.
d. A dyadic relation R is right unique (functional) iff ∀x, y1, y2 ∈ S, xRy1 ∧ xRy2 ⇒ y1 = y2.
e. A dyadic relation R is left serial iff ∀y∈S, ∃x∈S, xRy.
f. A dyadic relation R is right serial iff ∀x∈S, ∃y∈S, xRy.

1. a. A right unique and right serial dyadic relation sm over S is called a self-map (autofunction) and is denoted sm : S → S, with sm(x) 
= y, instead of x sm y, ∀x, y ∈ S. For self-maps, right seriality is called totality and right uniqueness is called functionality.
b. A self-map that is not right serial is called partial(ly defined) and is denoted sm : S → S ∪ NULLS, where NULLS is a distinguished 
countable set of null-values.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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c. A left and right unique dyadic relation sm over S is called a one-to-one (injective) self-map (autofunction) and is denoted sm : S 
↔ S.
d. A right unique and left serial dyadic relation sm over S is called a onto (surjective) self-map.
e. Any binary functional relation f ⊆ D × C (over sets C and D) is called a mapping (function) and is denoted f : D → C (where D is 
called its domain, and C its codomain); the image of f is the set Im(f) = {y | ∃x∈D, f(x) = y} ⊆ C; for any proper subset B ⊂ D, f|B : B 
→ C is called the restriction of f to B; trivially, self-maps are mappings with D = C or D ⊆ C or C ⊆ D.
f. A mapping f : D → C is total (totally defined) iff C ∩ NULLS = ∅; otherwise, f is partially defined.
g. For any set S there is a unique distinguished associated self-map called its unity mapping and denoted 1S : S ↔ S, defined as 
1S(x) = x, ∀x∈S. If S ⊆ T, 1S = 1T|S is also called the associated canonical injection mapping.
h. A mapping f : D → C is one-to-one (injective) iff f(x1) = y = f(x2) ⇒ x1 = x2, ∀x1, x2∈D.
i. A (Cartesian) mapping product f1 • … • fn : D → C1 × … × Cn, n > 1, natural (called arity), is the mapping defined by (f1 • … • fn)(x) 
= (y1, …, yn), ∀x∈D, ∀yi∈Ci, 1≤ i ≤ n > 1, naturals. If n = 1, f1 : D → C1 is called atomic.
j. A (Cartesian) mapping product f1 • … • fn : D → C1 × … × Cn, n > 1, natural, is minimally one-to-one iff it is one-to-one (i.e., (f1 • … 
• fn)(x1) = (y1, …, yn) = (f1 • … • fn)(x2) ⇒ x1 = x2, ∀x1, x2∈ D, ∀yi∈Ci, 1≤ i ≤ n > 1, naturals) and none of its proper subproducts is one-
to-one.
k. A mapping f : D → C is non-prime if it is neither one-to-one, nor a member of a minimally one-to-one (Cartesian) mapping 
product.
l. A relation R ⊆ S1 × … × Sn, n > 1, natural, may also be viewed as the one-to-one (Cartesian) mapping product f1 • … • fn : R → S1 × 
… × Sn of its canonical Cartesian projections fi : R → Si, 1 ≤ i ≤ n, defined as fi(x) = yi, ∀x∈R, yi∈Si, all of them being totally defined. 
m. A mapping f : D → C is onto (surjective) iff ∀y∈C, ∃x∈D such that f(x) = y (i.e., Im(f) = C).
n. A mapping f is bijective iff it is both one-to-one (injective) and onto (surjective).
o. A mapping f : D → C ∪ NULLS has a default value v∈C (denoted f default v) iff ∀x∈D, f(x)∈NULLS ⇒ f(x) is automatically set to v 
by the DBMS managing updates of f.
p. Given mappings fn : D → Sn, fn-1 : Sn → Sn-1, …, f2 : S3 → S2, f1 : S2 → C, n > 1, natural, the composite mapping cm = f1 ° … ° fn : D → C is 
defined as cm(x) = (f1 ° … ° fn)(x) = f1(f2(…fn-1(fn(x))…)), ∀x∈D (as it is easy to prove that mapping composition is associative, no 
parenthesis were used to define it). When n = 1, cm is called single (not composite).
r. Given an equivalence dyadic relation ~ over a set S, the set S/~ of the corresponding equivalence classes (blocks, partitions) is 
called the quotient set of S with respect to ~.
s. Between any set S and its quotient set with respect to an equivalence relation ~ there is a unique canonical surjection (onto 
mapping) ρ~ : S → S/~, defined as ρ~ (x) = y, where y is the equivalence class to which x belongs, ∀x∈S. 

2. A self-map sm over a set S (having any distinct elements x, y, z) is:
a. reflexive iff sm(x) = x
b. null-reflexive iff sm(x) = x ∨ sm(x)∈NULLS
c. irreflexive iff sm(x) ≠ x
d. symmetric iff sm(x) = y ⇒ sm(y) = x
e. null-symmetric iff sm(x) = y ⇒ sm(y) = x ∨ sm(y)∈NULLS
f. asymmetric iff sm(x) = y ⇒ sm(y) ≠ x
g. idempotent iff sm(x) = sm(sm(x)) = sm2(x)
h. null-idempotent iff sm2(x) = sm(x) ∨ sm2(x) ∈NULLS
i. anti-idempotent iff sm2(x) ≠ sm(x)
j. equivalence iff it is both reflexive, symmetric, and idempotent
k. null-equivalence iff it is both (null-)reflexive, (null-)symmetric, and (null-)idempotent
l. representative system mapping (of S with respect to an equivalence relation ~ over it) iff sm : S → S, sm = rs~ ° ρ~, where ρ~ : S → 
S/~ is the canonical surjection of S with respect to ~ and rs~ : S/~ → S is a mapping that associates to any equivalence class c ∈ S/~ 
one of its elements y∈S (called the representative of that class), i.e., sm(x) = rs~(ρ~ (x)) = rs~(c) = y, ∀x, y ∈ c ⊆ S.
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m. null-representative system mapping (of S with respect to an equivalence relation ~ over it) iff sm : S → S ∪ NULLS, where, as for 
l. above, sm = rs~ ° ρ~, ρ : S → S/~, rs~ : S/~ → S ∪ NULLS, sm(x) = rs~(ρ~(x)) = rs~(c) = y ∨ sm(x) = rs(c) ∈NULLS, ∀x, y ∈ c ⊆ S.
n. acyclic iff x2 = sm(x1) ∧ x3 = sm(x2) ∧ … ∧ xn = sm(xn-1) ⇒ x1 ≠ sm(xn), for any natural n > 0 and distinct x1, …, xn ∈ S.
o. left-inEuclidean iff sm(y) = x = sm(z) ⇒ y ≠ x ≠ z
p. Euclidean and inEuclidean iff ((y = sm(x) ⇒ z ≠ msm(x)) ∨ (z = sm(x) ⇒ y ≠ sm(x))) ∧ ((x = sm(y) ⇒ x ≠ sm(z)) ∨ (x = sm(z) ⇒ x 
≠ sm(y))) ⇔ (z = sm(x) ⇒ y ≠ sm(x)) ∧ (x = sm(y) ⇒ x ≠ sm(z)) (as functionality guarantees that both (y = sm(x) ⇒ z ≠ sm(x)) and 
(x = sm(z) ⇒ x ≠ sm(y))) ⇔ y ≠ z ∧ sm(y) ≠ sm(z) 

3. A constraint is a first order logic formula that has all its variable occurrences bound to a universal quantifier (i.e., ∀–for any– and 
∃– there is). For example, all above 20 properties are constraint types of self-maps.

4. A constraint is satisfied by a set of values for its variables if it has value true for them; otherwise, it is violated. A constraint set is 
satisfied by a set of values for all its variables if all its constraints are satisfied.

5. A constraint set is incoherent iff it is satisfied only by the corresponding empty set. For example, according to the first order logic 
laws of non-contradiction (“nothing can be both true and false simultaneously”) and excluded middle (“everything is either true 
or false, but not neither”), the sets {sm reflexive, sm irreflexive} and {sm symmetric, sm asymmetric} are incoherent, for any self-
map sm.

6. A constraint set Γ implies a constraint c iff c is true whenever all constraints of Γ are true. For example, as acyclicity implies irre-
flexivity for any self-map sm (as any sm(x) = x corresponds to a cycle of length 0), the set {sm acyclic} implies the constraint sm 
irreflexive.

7. A constraint c is redundant in a constraint set Γ iff {Γ – c} implies c. For example, in the set {sm acyclic, sm irreflexive}, sm irreflex-
ive is redundant, for any self-map sm.

8. A constraint set is minimal iff it does not contain any redundant constraint.

     Obviously, any DBMS must accept only satisfiable and coherent set of constraints and should enforce only minimal ones. Moreover, 
single (i.e., not composite) totally defined reflexive self-maps should never be stored, as they would duplicate the unity mappings of 
the corresponding sets (and thus, the surrogate keys of the corresponding db tables).

     In what follows, we consider any finite set S having at least 4 elements (which is a norm in dbs), any self-map sm over it, and any 
atomic mappings f : A → B, g : B → C, and h : C → D; we also consider 3 additional system (i.e., automatically added and deleted only by 
MatBase and read-only for its users) mapping constraint types: f self-map, f canonical (Cartesian) projection, and f canonical injection. 
The following propositions and corollaries hold:

Propositions

0. (i) sm might be connected iff S has at most 3 elements 
(ii) sm idempotent ⇔ sm transitive 
(iii) sm anti-idempotent ⇔ sm intransitive 
(iv) sm idempotent and anti-idempotent ⇔ sm2(x) ∈NULLS, ∀x∈S ⇒ sm null-idempotent. 
(v) sm might not be left-Euclidean as x ≠ y ≠ z ≠ x would be contradicted 
(vi) sm might not be right-Euclidean as functionality would be contradicted 
(vii) sm left-inEuclidean ⇔ sm irreflexive 
(viii) sm might not be right-inEuclidean as functionality would be contradicted 
(ix) sm Euclidean and inEuclidean ⇔ sm one-to-one

1. (i) (f one-to-one ⇒ ¬ (f non-prime)) ∧ (f non-prime ⇒ ¬ (f one-to-one)) 
(ii) (f total ⇒ ¬ (f default)) ∧ (f default ⇒ ¬ (f total)) 
(iii) any canonical Cartesian projection f is totally defined  
(iv) no canonical Cartesian projection f may be non-prime 
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(v) f self-map ∧ (f reflexive ∨ f irreflexive ∨ f symmetric ∨ f asymmetric ∨ f idempotent ∨ f equivalence ∨ f acyclic ∨ f representa-
tive system mapping) (i.e., only self-maps may have dyadic-type properties) 
(vi) (sm reflexive ⇒ ¬ (sm irreflexive)) ∧ (sm irreflexive ⇒ ¬ (sm reflexive)) 
(vii) (sm symmetric ⇒ ¬ (sm asymmetric)) ∧ (sm asymmetric ⇒ ¬ (sm symmetric)) 
(viii) (sm total ⇒ ¬ (sm null-reflexive ∨ sm null-symmetric ∨ sm null-idempotent ∨ sm null-equivalence ∨ sm null-representative 
system mapping)) ∧ ((sm null-reflexive ∨ sm null-symmetric ∨ sm null-idempotent ∨ sm null-equivalence ∨ sm null-representa-
tive system mapping) ⇒ ¬ ( sm total)) 
(ix) no sm may be a canonical Cartesian projection (i.e., no relation may be recursively defined over itself) 
(x) any canonical injection is totally defined, one-to-one, reflexive, and idempotent self-map. 
(xi) no canonical injection may be onto (i.e., in (E)MDM, inclusion is irreflexive [1])

2. (i) f one-to-one ∧ g one-to-one ⇒ g ° f one-to-one  
(ii) g ° f one-to-one ⇒ f one-to-one ∧ g|Im(f) one-to-one 
(iii) g ° f one-to-one ∧ f onto ⇒ g one-to-one 
(iv) f onto ∧ g onto ⇒ g ° f onto 
(v) g ° f onto ⇒ g onto 
(vi) g ° f onto ∧ g one-to-one ⇒ f onto 
(vii) h ° g ° f onto ∧ h one-to-one ⇒ g onto 
(viii) f ° g self-map ∧ f ° g reflexive ⇒ f onto 
(ix) f ° g self-map ∧ f ° g idempotent ⇔ g ° f reflexive

3. (i) sm onto ∧ sm total ⇔ sm one-to-one ∧ sm total 
(ii) 1S is total, one-to-one, reflexive, and idempotent 
(iii) sm = 1S ⇔ sm equivalence 
(iv) sm reflexive ⇔ sm = 1S 

(v) sm representative system mapping ∧ sm one-to-one ⇒ sm reflexive 
(vi) sm one-to-one ∧ sm ≠ 1S ⇒ sm irreflexive ∧ ¬(sm idempotent)

4. sm symmetric ⇔ sm2 = 1S

5. sm acyclic ⇔ smn(x) ≠ x, n > 0, natural
6. sm total ∧ sm idempotent ⇔ smn(x) = sm(x), n > 0, natural 
7.  (i) sm asymmetric ⇒ sm irreflexive 

 (ii) sm anti-idempotent ⇔ sm irreflexive 
 (iii) sm acyclic ⇒ sm asymmetric ∧ ¬(sm idempotent)

8. sm irreflexive ∧ sm idempotent ⇒ sm asymmetric
9. sm symmetric ∧ sm idempotent ⇒ sm reflexive
10. sm asymmetric ∧ sm idempotent ⇒ sm acyclic
11. sm representative system mapping ⇒ sm idempotent
12. (i) sm null-reflexive ∧ sm total ⇔ sm reflexive 

(ii) sm null-symmetric ∧ sm total ⇔ sm symmetric 
(iii) sm null-idempotent ∧ sm total ⇔ sm idempotent 
(iv) sm null-equivalence ∧ sm total ⇔ sm equivalence 
(v) sm null-representative system mapping ∧ sm total ⇔ sm representative system mapping

13. (i) sm null-reflexive ⇒ sm one-to-one ∧ sm null-idempotent 
(ii) sm null-representative system mapping ∧ sm one-to-one ⇒ sm null-reflexive 
(iii) sm irreflexive ∧ sm null-idempotent ⇒ sm asymmetric 
(iv) sm null-symmetric ∧ sm null-idempotent ⇒ sm null-reflexive 
(v) sm asymmetric ∧ sm null-idempotent ⇒ sm acyclic 
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(vi) sm null-representative system mapping ⇒ sm null-idempotent

Corollaries

0. For self-maps:

(i) Connectivity, intransitivity, Euclideanity, and inEuclideanity are of no interest. 
(ii) Transitivity is replaced by idempotency. 
(iii) For the satisfiability, coherence, and minimality of such constraint sets, as null-P-type constraints behave exactly as the 
corresponding P-type ones, the P-type ones and the Total constraint are all that end-users need (i.e., for P ∈{reflexivity, sym-
metry, idempotency, equivalence, representative system mapping } the Graphic User Interface (GUI) of MatBase only needs 
checkboxes for every one of them and one for Total, i.e., there is no need for any checkbox of type null-P; e.g., if the reflexivity 
checkbox is checked and the totality one is not, then MatBase considers null-reflexivity, otherwise it considers reflexivity 
instead). 

1. Consider any atomic mapping f : D → C and self-map sm : S → S; 
Any constraint set containing any of the following combinations of constraint types is incoherent: 
(i) f total ∧ f default 
(ii) (f one-to-one ∨ f bijective) ∧ f non-prime 
(iii) f canonical projection ∧ (¬(f total) ∨ f non-prime) 
(iv) ¬(f self-map) ∧ (f reflexive ∨ f irreflexive ∨ f symmetric ∨ f asymmetric ∨ f idempotent ∨ f equivalence ∨ f acyclic ∨ f repre-
sentative system mapping) 
(v) sm canonical injection ∧ (sm onto ∨ ¬(sm total) ∨ ¬(sm one-to-one) ∨ ¬(sm reflexive) ∨ ¬(sm idempotent) ∨ ¬(sm self-map)) 
(vi) sm reflexive ∧ sm irreflexive 
(vii) sm symmetric ∧ sm asymmetric  
(viii) sm total ∧ sm onto ∧ sm non-prime 
(ix) sm self-map ∧ sm canonical projection

Any constraint set containing any of the following combinations of constraint types is not minimal: 
(x) f one-to-one ∧ f onto ∧ f bijective (f bijective is redundant, i.e., f one-to-one ∧ f onto ⇒ f bijective) 
(xi) (f one-to-one ∨ f onto) ∧ f bijective (f one-to-one or/and f onto are redundant, i.e., f one-to-one ∧ f onto ⇐ f bijective) 
(xii) sm reflexive ∧ sm symmetric ∧ sm idempotent ∧ sm equivalence (sm equivalence is redundant, i.e., sm reflexive ∧ sm sym-
metric ∧ sm idempotent ⇒ sm equivalence) 
(xiii) (sm reflexive ∨ sm symmetric ∨ sm idempotent) ∧ sm equivalence (sm reflexive or/and sm symmetric or/and sm idempo-
tent are redundant, i.e., sm reflexive ∧ sm symmetric ∧ sm idempotent ⇐ sm equivalence)

2. Consider any mappings f : A → B, g : B → C, and self-map sm = h ° i : S → S; 

(i) any constraint set containing f one-to-one ∧ g one-to-one ∧ g ° f non-prime is incoherent (i.e., f one-to-one ∧ g one-to-one ⇒ 
g ° f one-to-one).  
(ii) any constraint set containing f one-to-one ∧ g one-to-one ∧ g ° f one-to-one is not minimal, as g ° f one-to-one is redundant 
(i.e., f one-to-one ∧ g one-to-one ⇒ g ° f one-to-one).  
(iii) any constraint set containing g ° f one-to-one ∧ (f non-prime ∨ g|Im(f) non-prime) is incoherent. 
(iv) any constraint set containing g ° f one-to-one ∧ (f one-to-one ∨ g|Im(f) one-to-one) is not minimal, as f one-to-one and g|Im(f) 
one-to-one are redundant (i.e., g ° f one-to-one ⇒ f one-to-one ∧ g|Im(f) one-to-one). 
(v) any constraint set containing g ° f one-to-one ∧ f onto ∧ g non-prime is incoherent. 
(vi) any constraint set containing g ° f one-to-one ∧ f onto ∧ g one-to-one one is not minimal, as g one-to-one is redundant (i.e., 
g ° f one-to-one ∧ f onto ⇒ g one-to-one). 
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(vii) any constraint set containing g ° f onto is not minimal, as g ° f onto is redundant (i.e., f onto ∧ g onto ⇒ g ° f onto). 
(viii) any constraint set containing g ° f onto ∧ g onto is not minimal, as g onto is redundant (i.e., g ° f onto ⇒ g onto). 
(ix) any constraint set containing g ° f onto ∧ g one-to-one ∧ f onto is not minimal, as f onto is redundant (i.e., g ° f onto ∧ g one-
to-one ⇒ f onto). 
(x) any constraint set containing sm reflexive ∧ h onto is not minimal, as h onto is redundant (i.e., sm reflexive ⇒ h onto). 
(xi) any constraint set containing sm reflexive ∧ i ° h idempotent is not minimal, as i ° h idempotent is redundant (i.e., sm reflex-
ive ⇒ i ° h idempotent). 
(xii) any constraint set containing sm idempotent ∧ i ° h reflexive is not minimal, as i ° h reflexive is redundant (i.e., sm idempo-
tent ⇒ i ° h reflexive).

3. Consider any mappings f : A → B, g : B → C, and h : C → D; then any constraint set containing h ° g ° f onto ∧ h one-to-one ∧ g onto 
is not minimal, as g onto is redundant (i.e., h ° g ° f onto ∧ h one-to-one ⇒ g onto).

For all following corollaries, consider any set S and self-map sm : S → S;

4. (i) Any constraint set containing sm total ∧ sm one-to-one ∧ (sm onto ∨ sm bijective) is not minimal, as sm onto and sm bijective 
are redundant (i.e., sm total ∧ sm onto ⇔ sm total ∧ sm one-to-one). 
(ii) Any constraint set containing sm total ∧ (sm onto ∨ sm bijective) must be replaced by sm total ∧ sm one-to-one (with sm 
onto and sm bijective being flagged as redundant).

5. (i) Except for sm = 1S, no other totally defined self-map may be declared as equivalence (i.e., sm total ∧ sm ≠ 1S ∧ sm equivalence 
is rejected, as there is no sense in duplicating 1S). 
(ii) Only composite or not totally defined self-maps may be declared as reflexive, as there is no sense in duplicating 1S (i.e., sm 
total ∧ sm single ∧ sm reflexive is rejected). 
(iii) Only non-totally defined self-maps may be declared as one-to-one representative system mappings, as there is no sense in 
duplicating 1S (i.e., sm total ∧ sm one-to-one ∧ sm representative system mapping is rejected). 
(iv) Only non-totally defined self-maps may be declared as symmetric and idempotent, as there is no sense in duplicating 1S 
(i.e., sm total ∧ sm symmetric ∧ sm idempotent is rejected). 
(v) Any constraint set containing sm one-to-one ∧ sm idempotent is incoherent. 
(vi) Any constraint set containing sm one-to-one ∧ sm irreflexive (with sm ≠ 1S) is not minimal, as sm irreflexive is redundant 
(i.e., sm one-to-one ∧ sm ≠ 1S ⇒ sm irreflexive).

6. (i) Any constraint set containing sm asymmetric ∧ sm reflexive is incoherent. 
(ii) Any constraint set containing sm asymmetric ∧ sm irreflexive is not minimal, as sm irreflexive is redundant (i.e., sm asym-
metric ⇒ sm irreflexive). 
(iii) Any constraint set containing sm acyclic ∧ (sm idempotent ∨ sm symmetric ∨ sm reflexive) is incoherent. 
(iv) Any constraint set containing sm acyclic ∧ (sm asymmetric ∨ sm irreflexive) is not minimal, as sm irreflexive and sm asym-
metric are redundant (i.e., sm acyclic ⇒ sm asymmetric).

7. (i) Any constraint set containing sm irreflexive ∧ sm idempotent ∧ sm symmetric is incoherent. 
(ii) Any constraint set containing sm irreflexive ∧ sm idempotent ∧ sm asymmetric is not minimal, as sm asymmetric is redun-
dant (i.e., sm irreflexive ∧ sm idempotent ⇒ sm asymmetric).

8. Any constraint set containing sm asymmetric ∧ sm idempotent ∧ sm acyclic is not minimal, as sm acyclic is redundant (i.e., sm 
asymmetric ∧ sm idempotent ⇒ sm acyclic).

9. Any constraint set containing sm representative system mapping ∧ sm idempotent is not minimal, as sm idempotent is redundant 
(i.e., sm representative system mapping ⇒ sm idempotent).

10. (i) Any constraint set containing ¬(sm total) ∧ sm reflexive ∧ sm non-prime is incoherent. 
(ii) Any constraint set containing ¬(sm total) ∧ sm reflexive ∧ sm one-to-one is not minimal, as sm one-to-one is redundant (i.e., 
sm null-reflexive ⇒ sm one-to-one). 
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(iii) Any constraint set containing ¬(sm total) ∧ sm representative system mapping ∧ sm one-to-one ∧ sm irreflexive is incoher-
ent. 
(iv) Any constraint set containing ¬(sm total) ∧ sm representative system mapping ∧ sm one-to-one ∧ sm reflexive is not mini-
mal, as sm reflexive is redundant (i.e., sm null-representative system mapping ∧ sm one-to-one ⇒ sm null-reflexive). 
(v) Any constraint set containing ¬(sm total) ∧ sm symmetric ∧ sm idempotent ∧ sm irreflexive is incoherent. 
(vi) Any constraint set containing ¬(sm total) ∧ sm symmetric ∧ sm idempotent ∧ sm reflexive is not minimal, as sm reflexive is 
redundant (i.e., sm null-symmetric ∧ sm null-idempotent ⇒ sm null-reflexive).

     MatBase stores in its metacatalog these 10 above corollaries, as well as needed data on self-maps and atomic and composite map-
pings in the tables presented in the following subsections.

Table COROLLARIES

     Table COROLLARIES (see Figure 2) stores data about the corollaries on the coherence and minimality of constraint sets (a surrogate 
primary autogenerated key x, corollaries’ types, names, bodies, book volume, subsection, and page number in which they appear in 
[9], etc.). COROLLARIES also stores data for all other 56 (E)MDM constraint types [1], not only for the 20 self-map and general function 
ones (see, e.g., [2]). Data from this table (which was manually entered) is used for providing users with context-sensitive questions, 
warnings, and error messages.

     Please note in Figure 2 the selected lines from this table: they correspond to a 3rd corollary type (besides Incoherence and Redun-
dancy [2]), namely Rejection, which directs MatBase to reject any such constraint combination, as the corresponding self-map would 
duplicate the unity mapping of the corresponding set. 

Figure 2: MS Access MatBase COROLLARIES table for storing corollaries on the coherence and minimality of 
constraint sets.
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Figure 3: MS Access MatBase SMCCoherencies table for storing non-trivial combinations of general mapping and 
self-map constraint types.

Tables SMCCoherencies and SMCAdditionalRedund

    Table SMCCoherencies (see Figure 3) stores data about the coherency of the non-trivial self-map and general function constraint type 
combinations (out of the 217 – 1 = 131,071 possible ones). Abbreviations of the 18 columns of SMCCoherencies after the primary key x 
have the following meanings: Ch = Coherent?, SM = Self-map?, CP = Canonical projection?, CI = Canonical injection?, RS = Representative 
System mapping?, A = Acyclic?, Q = eQuivalence?, I = Idempotent?, AS = Asymmetric?, S = Symmetric? IR = Irreflexive?, R = Reflexive?, B 
= Bijective?, OT = Onto?, UK =Injective? (Unique Key?), NP = Non-Prime?, DV = Default Value?, T = Total?. 

     The unique combination numbers x are computed as the decimal equivalents of the corresponding binary ones, just like for all other 
tables storing constraint type combinations (where SM is multiplied by 216 = 65536, CP by 215 = 32768, …, and T by 20 = 1, i.e., x = [T] + 
2*[DV] + 4*[NP] + 8*[UK] + 16*[OT] + 32*[B] + 64*[R] + 128*[IR] + 256*[S] + 512*[AS] + 1024*[I] + 2048*[Q] + 4096*[A] + 8192*[RS] 
+ 16384*[CI] + 32768*[CP] + 65536*[SM]).

    For example, combinations {Self-map, Onto} and {Self-map, Onto, Non-prime} have 65552 and 65556, respectively, as values for x 
(Self-map being multiplied by 216, Onto being multiplied by 24 and Non-prime by 22) and are coherent, while the one for x = 65557, i.e., 
{Self-map, Onto, Non-prime, Total} is incoherent (as, according to Corollary 1(viii), any totally defined and onto self-map cannot be 
non-prime as well, because, according to Proposition 3(i), any such self-map is one-to-one as well, so, according to Proposition 1(i), it 
may not be non-prime).

     Obviously, Notes is a foreign key referencing the primary key x of table COROLLARIES, from which its combo-box displays the corre-
sponding values from the CorId and CorDescription columns for incoherent and not minimal combinations. The corresponding com-
bo-box row source SQL statement is the following:

SELECT x, CorId & “. “ & CorDescription AS [CorollaryID, Body] FROM COROLLARIES 

WHERE CorSection like “A.6.*” ORDER BY CorId;
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   SMCCoherencies instance was automatically generated using SQL insert and update queries as follows: a query first inserted all 
non-trivial possible combinations (the trivial ones, i.e., those from Corollary 1(i) to (ix), are not stored); then, queries were run for 
each of the other 19 incoherence results, marking corresponding combinations as incoherent. For example, the query corresponding 
to Corollary 6(iii) is the following one (where 77 is the value of the primary key x for Corollary 6(iii) in table COROLLARIES):

UPDATE [SMCCoherencies] SET [Ch] = False, [Notes] = 77 WHERE [A] AND ([I] OR [S] OR [R]);

    Finally, queries were run for all redundancy corollaries to update notes for the coherent but not minimal constraint set ones. For 
example, the query corresponding to Corollary 1(xi) is the following (where 99 is the value of the primary key x for Corollary 1(xi) in 
table COROLLARIES):

UPDATE [SMCCoherencies] SET [Notes] = 99 WHERE [Ch] AND [B] AND ([UK] OR [OT]);

   Generally, more than one redundancy corollary may apply to a constraint set. For example, the set {Bijective, One-to-one, Onto} 
has both One-to-one and Onto redundant, according to corollary 1(xi). Consequently, there is also a table SMCAdditionalRedund in 
MatBase’s metacatalog for storing the rest of redundancies for combinations having more than one; its structure is identical to the 
one of the table SMCRedundancies presented in the next subsection and its instance is also automatically populated with SQL INSERT 
statements. As this table is used only for automatically adding rows to the SMCRedundancies table and then for displaying accurate con-
text-sensitive information and error messages, to keep things simple in this paper we are not providing more details on how it is used. 

Table SMCRedundancies

     Table SMCRedundancies (see Figure 4) stores data on the minimality of self-map and atomic map constraint type sets. Column SMC-
Combination is a foreign key referencing the primary key x of table SMCCoherencies; column Notes is just like the homonym one in table 
SMCCoherencies, except for the fact that it points to the subset of corollaries having type “Redundancy”; the corresponding combo-box 
row source SQL statement is the following:

     SELECT x, CorId & “. “ & CorDescription AS [CorollaryID, Body] FROM COROLLARIES 

     WHERE CorType = 1 AND CorSection Like “A.6.*” ORDER BY CorId;

     Finally, the column Redundancy stores the redundant constraint types that make the corresponding constraint sets not minimal.

     As an example, for any constraint set having SMCCombination = 65545, corresponding in table SMCCoherencies to the line having x = 
65545, which encodes a constraint set of type {Self-map, One-to-one, Total}, there are two lines in table SMCRedundancies storing the 
fact that both bijectivity and ontoness must be added as redundant (see the selected lines from Figure 4).

    The instance of SMCRedundancies was also automatically generated by running SQL queries for each redundancy corollary. For exam-
ple, for corollary A.6.1.4 (i) (see the first row above the selected ones from Figure 2 and, e.g., row 65561 from Figure 3), the following 
two SQL statements were run for inserting the two selected lines from Figure 4:

     INSERT INTO SMCRedundancies (SMCCombination, [Notes], Redundancy)

     SELECT x, [Notes], “B” FROM SMCCoherencies WHERE [Ch] AND [SM] AND [UK] AND [T];

     INSERT INTO SMCRedundancies (SMCCombination, [Notes], Redundancy)

     SELECT x, [Notes], “OT” FROM SMCCoherencies WHERE [Ch] AND [SM] AND [UK] AND [T];

     Please note that these SQL statements need to be recursively run up until no new redundancy is added to SMCRedundancies, just like 
it is the case for the dyadic relation constraints (see [2]).
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Figure 4: MS Access MatBase SMCRedundancies table for storing redundant constraint types of not minimal 
self-map constraint sets.

Tables DATABASES and CONSTRAINTSETS

     Figure 5 shows MatBase’s metacatalog tables for storing data on the dbs and associated constraint sets it manages. Table DATABAS-
ES has a surrogate primary key (#DB), columns for storing the name (DBName), path where they reside on the server (DBPath), type 
(DBType), whether they are system (i.e., part of the metacatalog) or user ones (System), and a short description of what data each db 
stores (DBSemantics), as well as other needed details for their backup and restore.

     Table CONSTRAINTSETS also has a surrogate primary key (#C), columns for storing the name (ConstraintName), db to which they 
belong (Database), type (ConstraintType), whether they are system (i.e., implicit ones, like Self-map, Canonical projection, Canonical 
injection) or user (explicit) ones (System), and a short description (ConstraintSemantics), as well as other equally important columns 
like ImplyedBy (for those that are implied by other constraints), Set and Mapping (for storing the object set or the mapping they con-
strain, if there is only one such set or mapping, respectively), the E-R Diagram cycle (see [9, 24]) to which it is associated, if any, etc. For 
example, Figure 5 shows the first columns of this table for the constraint set associated to a Geography db.

Tables SETS, SetsCategories, and FUNCTIONS

    For any object set S that it manages, MatBase automatically generates its virtual unity mapping 1S and flags it as total, one-to-one, 
onto, bijective, reflexive, symmetric, idempotent, equivalence, and representative system mapping. Being automatically generated, the 
self-map 1S is a system object, which means that MatBase users may not either delete it or update its properties. Then, MatBase also 
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Figure 5: MS Access MatBase DATABASES and CONSTRAINTSETS tables for storing metadata on managed databases 
and associated constraint sets.

generates its object-id called x. In the table storing S’s instance, x is implemented as the surrogate primary key; if S is not a subset of 
another set, then x’s values are autogenerated; if S is a subset of T, x is also the canonical injection associated to S ⊆ T, so it must take 
its values from T’s x ones.

     Whenever S is a relation (i.e., a db relationship-type object), MatBase users must specify its atomic canonical Cartesian projections, 
in any order but having distinct names. MatBase flags them as such and automatically declares them totally defined and adds to the db 
scheme their totally defined one-to-one Cartesian function product.

     More attributes of the MatBase’s metacatalog table SETS may be spotted in Figure 1: SetName, Synonym (of the set name), SetType 
(e.g., Entity, Relationship, Value, Calculated, System), System, SetSemantics, card (current set cardinal), objectId (x, generally, but db 
architects might rename it or choose another mapping instead), SetCategory, SetCategOrdinal (desired set position within its catego-
ry), StdUpdForm (name of the standard software application Windows form managing set’s data instance), FactPredicate (associated 
Datalog¬ factual predicate), minValue, maxValue (minimum and maximum accepted values for its data instance), and Static (i.e., is the 
set a static one, like the rainbow colors set, or a dynamic one, to/from which users may add/delete elements?).

    Figure 6 shows the MS Access MatBase’s metacatalog table SetsCategories and, as an example, for the Neighbors category of the Ge-
ography db, some of its sets. Any set category belongs to a Database and a SetCategory, has a description (SetsCategSemantics) and a 
surrogate key value (#SC) and may be a System or user-defined one.

    Table FUNCTIONS stores data about the mappings managed by MatBase. For example, Figure 1 shows the ones defined on the set 
STATES from the Geography db: besides their implicit domain, please note their names, codomains, as well as some of their proper-
ties and constraints (System, Total, Default value, Non-Prime, Injective, Surjective, Reflexive, Irreflexive, Symmetric, Asymmetric, Acyclic, 
RepresentativeSystemMapping). By sliding the curresponding cursor bar to the right, MatBase users may inspect (and update the non-
read-only ones) the rest of them (Idempotent, Equivalence, CanonicalProjection, CanonicalInjection, Self-map, Arity, MinValue, MaxVal-
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ue, Computed, Composed, System, FunctionSemantics), as well as other ones that are irrelevant for this article.

Figure 6: MS Access MatBase SetsCategories table for storing metadata on managed set categories.

Tables *FUNCTIONS and COMP_FUNCT_COMP

   Composed mappings are a subset of the calculated ones, which are stored in the metacatalog table *FUNCTIONS (in their turn, calcu-
lated mappings being a subset of all mappings stored in table FUNCTIONS); consequently, the surrogate primary key of COMP_FUNCT_
COMP is a foreign key referencing the corresponding one from table *FUNCTIONS (which is a foreign key referencing the corresponding 
one from table FUNCTIONS). Please note from Figure 1 that, beside their name, domain, and codomain, calculated mappings (in this 
case the composed one State ° StateCapital) also have a mathematic Formula and a SQL Formula. The composed mappings are specified 
one by one, in the order (Position) of their composition (which is validated by MatBase: for any g ° f, f ’s codomain must be equal to or 
a subset of g’s domain), and only accepting atomic mappings (Member Function).

The structural E-R diagram of this part of MatBase’s metacatalog

     Figure 7 shows the structural E-R diagram of this part of MatBase’s metacatalog, which makes crystal clear the functional relations 
between all the above 11 presented tables.

MatBase Algorithm SMCSCMEA 

     When a user tries to add a new constraint c to a mapping f (defined over a set S and having an associated constraint set C) by click-
ing the corresponding checkbox shown in Figure 1 or one that becomes visible by sliding the corresponding cursor bar to the right, 
MatBase is first computing the x value of this new constraint set and is looking for it in table SMCCoherencies. If it doesn’t find it, which 
only occurs when this set is trivially incoherent (e.g., c = Non-prime and C contains Injectivity), then it unchecks the corresponding box 
and displays the appropriate error message. If it finds it corresponding to an incoherent combination (e.g., {Self-map, Onto, Total} ∪ 
{Non-prime}), it rejects it as well, similarly. If the corresponding combination is coherent but has in table SMCRedundancies the type 
Rejection (i.e., the new constraint set corresponds to a unity mapping, see the selected lines from Figure 2), then it rejects it as well, 
similarly. Finally, in all other cases it checks whether the current f’s data instance satisfies c and if this is not the case it rejects c as well, 
similarly to the above cases.
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Figure 7: The structural E-R diagram of the above MatBase’s metacatalog tables.

     Whenever c is accepted both syntactically (i.e., from the coherence point of view) and semantically (i.e., from the data satisfiability 
one), MatBase adds to S’s form programming class (automatically generated immediately after table S has been added to the current 
db) calls to the corresponding c enforcement methods (which are publicly stored in its Constraint library) [10]. Moreover, if formerly 
not redundant constraints have become redundant, MatBase deletes from the S’s form programming class the code calling the corre-
sponding public enforcement methods. Finally, it also automatically checks all newly redundant constraints, according to SMCRedun-
dancies data for the newly x value from SMCCoherencies (e.g., if C = {Self-map, Total}, c = One-to-one, then C’ = {Self-map, Total, One-to-
one, Onto, Bijective}, with Onto and Bijective being both redundant).

     For composed mappings things are slightly more complicated but similar. For example, if f = g ° h, Cf = ∅, Cg = {One-to-one}, Ch ={Onto}, 
c = One-to-one, and c is satisfied by the current db instance (i.e., there are no duplicated f(x)), then Cf ={One-to-one} but the one-to-
oneness of g should not be enforced anymore, as it became redundant according to Corollary 2(vi).

     Things are even more complicated when system constraints are automatically added. For example, let us consider f : D → E, with D 
≠ E, D ⊄ E, E ⊄ D, and C = {Total, Onto}; if users successfully add the constraint D ⊆ E, f becomes a self-map, so, according to Corollary 
4(i), C = {Self-map, Total, Onto, One-to-one, Bijective}, with ontoness and bijectivity redundant, which means that ontoness enforcing 
code should be removed and f one-to-one should be added (as it is simply enforceable through the underlying relational DBMS, while 
ontoness is not).

    When a user tries to remove a constraint c by unchecking its corresponding non-read-only check-box, MatBase first computes the 
x value for the initial associated constraint set C and looks for c in SMCRedundancies table for x; if it finds it, then rejects the deletion 
attempt (as redundant constraints may not be deleted); otherwise, it removes from the S’s form programming class the calls to the 
constraint enforcement methods corresponding to c, then computes the corresponding new x value for C’ and, finally, unchecks all 
formerly redundant constraints that are not implied anymore (e.g., if C = {Self-map, Acyclic, Asymmetric, Irreflexive} and c = Acyclic is 
deleted from it, then Asymmetric and Irreflexive are also deleted and C’ = {Self-map}).

     Similar to constraint additions, things are slightly more complicated but essentially the same for composed mappings. For example, 
if f = g ° h, Cf = {Onto}, Cg = {One-to-one}, Ch ={Onto}, and c = Onto, then Cf =∅, Cg = {One-to-one}, Ch = ∅, as, according to Corollary 2(ix), 
h Onto was redundant and now it is not anymore.
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    Again, things are even more complicated when system constraints are automatically removed. For example, let us consider sm = g 
° f : S → S, C = {Self-map, Total, One-to-one, Idempotent, Onto, Bijective}, with Onto and Bijective redundant, and Cf = {One-to-one}; if 
users remove g from table COMP_FUNCT_COMP, sm degenerates into an atomic single mapping, so that MatBase must also first remove 
f from COMP_FUNCT_COMP, then sm from table *FUNCTIONS, then sm from table FUNCTIONS, then drop sm together with its NOT NULL 
and UNIQUE constraints from the underlying relational db table S, then remove the code from S’s class for enforcing sm’s idempotency, 
then empty Cf (as its one-to-oneness was redundant according to Corollary 2(iv)) and, if, in the corresponding db, there is a rsm = f ° g 
: S → S, remove from its constraint set the Reflexive constraint (as it was redundant, according to Corollary 2(xii)), and, finally, remove 
from S’s class the code for enforcing rsm’s reflexivity.

    Figure 8 presents the corresponding pseudocode algorithm used by MatBase to enforce self-map and atomic mapping constraints, 
while guaranteeing the satisfiability, coherency, and minimality of such constraint sets.

Results and Discussion 
Proposition 14

Algorithm SMCSCMEA from Figure 8 has the following properties: 

(i) its complexity is a constant (i.e., O(k)) 
(ii) it guarantees the satisfiability, coherence, and minimality of self-map, atomic, and composed mapping constraint sets 
(iii) it is solid, complete, and optimal.

Proof:

(i) Trivially, it does not contain any loop, so it always ends in finite time after a (small) number of finite steps.

(ii) (satisfiability) Trivially, any void constraint set is satisfied by any data instance of any mapping and any non-void constraint set that 
is satisfied by a data instance remains satisfied after removing one of its constraints; as SMCSCMEA does not accept adding a new con-
straint to the constraint set of such a mapping if its instance does not satisfy it as well, it follows, obviously, that SMCSCMEA guarantees 
the satisfiability of such constraint sets.

      (coherence) Trivially, any void constraint set is coherent, and any non-void coherent constraint set remains coherent after removing 
one of its constraints; as SMCSCMEA does not accept adding a new constraint to the constraint set of such a mapping if this would result 
in an incoherent set, it follows, obviously, that SMCSCMEA guarantees the coherence of such constraint sets as well.

    (minimality) Trivially, any void constraint set is minimal; as SMCSCMEA is never enforcing redundant constraints but only signals 
them to the users for their info and is recomputing the subset of redundant constraints after accepting both adding and deleting a 
constraint, it follows, obviously, that SMCSCMEA guarantees the minimality of such constraint sets as well.

(iii) (solidity) Trivially, SMCSCMEA accepts to add to or delete from mapping constraint sets only the 23 mapping constraint types de-
fined and characterized in the previous section.

    (completeness) Trivially, SMCSCMEA accepts to add to or delete from mapping constraint sets all 23 types of mapping constraints 
defined and characterized in the previous section.

    (optimality) Trivially, SMCSCMEA manages satisfiable, coherent, and minimal mapping constraint sets in the minimum possible num-
ber of steps, with the minimum possible accesses to the 11 tables presented in the previous section (and which are stored on external 
disks).      Q.E.D.

     The actual corresponding algorithms (written both in MS VBA and .NET C# with embedded SQL, respectively) are a little bit more 
complex, both to gain execution speed (by avoiding unnecessary disk reads), to prevent users from making unwanted mistakes, and 
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Figure 8: MatBase pseudocode Algorithm SMCSCMEA.

to provide maximum possible accuracy for the context-sensitive messages it displays. For example, whenever the current mapping f 
has no constraints and the user adds one, it accepts it immediately if the current f ’s instance satisfies it, as there may not be any corre-
sponding either incoherency or redundancy. For example, whenever the user unchecks a constraint box, even if the corresponding de-
letion is possible MatBase displays a deletion confirmation message, does not proceed with the deletion if the request is not confirmed, 
and automatically unchecks the corresponding box. Moreover, if the request is confirmed and c is the only constraint of C, MatBase 
does not search for newly redundant constraints, as none may exist. Finally, automatically added or deleted system constraints are 
not dealt with by SMCSCMEA, as they are heavily dependent on other constraint types (e.g., set constraints) and composite mapping 
management.
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Conclusion

    We provided concise but accurate mathematical definitions for mappings, self-maps, their properties viewed as constraint types 
from the db perspective, as well as for the satisfiability, coherence, and minimality of such constraint sets.

    We presented and discussed the pseudocode algorithm used by MatBase (our intelligent DBMS prototype based on both the rela-
tional, E-R, and our (Elementary) Mathematic data models) for enforcing atomic, composite, and self-map mapping constraint types, 
by guaranteeing the satisfiability, coherence, and minimality of such constraint sets. We also included description of the tables from 
MatBase’s metacatalog needed for managing the corresponding metadata.

We proved that this algorithm actually guarantees both satisfiability, coherence, and minimality, while being fast, solid, complete, and 
optimal.

     Obviously, the ultimate goal of the design and development of dbs and db software applications is to provide customers, first of all, 
with the tools that are not only user-friendly, but, above all, guaranteeing the highest possible data quality for their dbs and informa-
tion extracted from them. If these tools do not guarantee the satisfiability and coherence of the associated constraint sets (be them 
enforced at the db or/and at the db software application levels), then junk data might (accidentally or purposely, it does not matter) be 
stored in their dbs, which leads to junk information extracted from them. Moreover, if these constraint sets are not minimal (which, it 
is true, does not impact data quality), then the corresponding db software applications run unnecessarily slower, to the dissatisfaction 
of their customers. 

     This paper also proves once more the formidable power of using mathematics (in particular, the naïve theory of sets, relations, and 
functions coupled with the first-order predicate calculus with equality) in dbs and db software applications design and development.
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