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Abstract

     This paper rigorously and concisely defines, in the context of our (Elementary) Mathematical 
Data Model ((E)MDM), the mathematical concepts of dyadic relation, reflexivity, irreflexivity, 
symmetry, asymmetry, transitivity, intransitivity, Euclideanity, inEuclideanity, equivalence, acy-
clicity, connectivity, the properties that relate them, and the corresponding corollaries on the 
coherence and minimality of sets made of such dyadic relation properties viewed as database 
constraints. Its main contribution is the pseudocode algorithm used by MatBase, our intelligent 
database management system prototype based on both (E)MDM, the relational, and the enti-
ty-relationship data models, for enforcing dyadic relation constraint sets. We proved that this 
algorithm guarantees the satisfiability, coherence, and minimality of such sets, while being very 
fast, solid, complete, and minimal. In the sequel, we also presented the relevant MatBase user 
interface as well as the tables of its metacatalog used by this algorithm. 

Keywords: dyadic relation properties; satisfiability, coherence, and minimality of constraint 
sets; (Elementary) Mathematical Data Model; MatBase; db and db software application design

Abbreviations

(E)MDM = (Elementary) Mathematical Data Model. 
DBMS = Database Management System. 
db(s) = database(s). 
iff = if and only if.

Introduction

     We presented in [1] the current version of our (Elementary) Mathematical Data Model ((E)MDM). 
Out of its 76 constraint types, there are 11 pertaining to dyadic relations: reflexivity, irreflexivity, 
symmetry, asymmetry, transitivity, intransitivity, Euclideanity, inEuclideanity, equivalence, connec-
tivity, and acyclicity. As usual in mathematics, some of them or some combinations of them imply 
others, while some of them are mutually exclusive. This is why any intelligent Database Management 
System (DBMS) must accept only satisfiable, coherent, and, for optimality concerns, also minimal sets 
of constraints.
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     MatBase [2] is our intelligent DBMS prototype, based on both (E)MDM, the Entity-Relationship Data Model [3-5], the Relational Data 
Model [5-7], and Datalog¬ [7, 8], currently implemented in two MS platforms: Access (for small dbs and undergraduate students) and 
.NET C# and SQL Server (for large dbs and MSc. students). Its (E)MDM interface provides users with a form (see, e.g., Figure 1) in which 
all metadata [9] for any set of a database (db) it manages may be inspected and updated.

Figure 1: MS Access MatBase form for managing db sets’ schema.

     In particular, for dyadic relationships users may assert or delete their properties by simply clicking on the corresponding checkbox-
es from the Relationship structure tab. Immediately after each such click, MatBase analyzes the new desired such constraint set and 
undoes the update if it is invalid (e.g., the current relation is not a dyadic one, or the corresponding constraint set would be incoherent, 
or the user tried to delete a redundant constraint, or the current db instance does not satisfy the newly desired constraint set, etc.). If 
the update is valid, then MatBase not only accepts it, but also automatically updates the subset of corresponding redundant constraints 
and generates or deletes the code needed to enforce the newly desired dyadic relation type constraint set. 

     This paper describes the math behind this process, as well as the metadata and algorithm that MatBase uses to perform these tasks. 
Of course, that these 11 constraint types are non-relational, i.e., they may not be enforced by any relational DBMS (e.g., MS SQL Server, 
Oracle Database, IBM DB2, etc.). Consequently, they should be enforced by db software applications managing the corresponding rela-
tional dbs. MatBase automatically generates such software applications for every db it manages.

Related work

     MatBase‘s constraint sets coherence and minimality enforcement algorithms were generally presented at a higher conceptual level 
in [10]. First, [10] deals with all (E)MDM constraint types (which were only 61 at that time); then, it does not address the particular-
ities of dyadic relations, which are cases of homogeneous binary function products (i.e., of type f • g : D → (C ∪ NULLS)2), for which 
both functions are totally defined (i.e., they may not take null values) and their product is minimally one-to-one (as dyadic relations 
are sets, so they do not allow for duplicates). Moreover, [10] does not deal with the constraint sets which imply the universality of the 
corresponding dyadic relations.

     Deeper details on dyadic relationship enforcement in MatBase were presented in [11, 12].

https://primerascientific.com/psen
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     Proofs of the mathematical results presented in the next section may be found, e.g., in [8, 13]. 

   (E)MDM is also a 5th generation programming language [14, 15] and MatBase is also a tool for transparent programming while 
modeling data at conceptual levels [2].

    To our knowledge, the other most closely related approaches to non-relational constraint enforcement are based on business rules 
management (BRM) [16, 17] and their corresponding implemented systems (BRMS) and process managers (BPM), like the IBM Op-
erational Decision Manager [18], IBM Business Process Manager [19], Red Hat Decision Manager [20], Agiloft Custom Workflow/
BPM [21], etc. They are generally based on XML (but also on the Z notation, Business Process Execution Language, Business Process 
Modeling Notation, Decision Model and Notation, or the Semantics of Business Vocabulary and Business Rules), which is the only oth-
er field of endeavor trying to systematically deal with business rules, even if informally, not at the db design level but at the software 
application one, and without providing automatic code generation.

     From this perspective, (E)MDM is also a BRM but a formal one, and MatBase is also a BRMS but an automatically code generating one.

     The satisfiability, coherence, and minimality of first order predicate formulae sets has been extensively studied mathematically (e.g., 
[22]) but not in the db contexts, as there are only six relational constraint types (for which any combination is coherent), out of which 
NoSQL DBMSes only use 2 or 3. 

Materials and Methods

     The following definitions, propositions, and corollaries are from Appendix A (“The Math Behind (E)MDM”) of [8]. The propositions 
are from its subsection A.3.1.3 (“Relations”), while the corollaries from its subsection A.5.2 (“Coherence and Minimality of Dyadic Re-
lationship Constraint Sets”), where they are numbered from A.5.2.1 to A.5.2.19.

Definitions

1. A dyadic relation R is a subset of a Cartesian product of a set S with itself: R ⊆ S × S; iff R = S × S = S 2 then it is said to be universal.
2. A dyadic relation R over a set S (having any distinct elements x, y, z) is:

a. reflexive iff xRx.
b. irreflexive iff ¬(xRx).
c. symmetric iff xRy then yRx.
d. asymmetric iff xRy then ¬(yRx).
e. transitive iff xRy and yRz then xRz.
f. intransitive iff xRy and yRz then ¬(xRz).
g. Euclidean iff xRy and xRz (right-Euclideanity) or yRx and zRx (left-Euclideanity) then yRz and zRy (i.e., both left- and right-Eu-

clidean).
h. inEuclidean iff xRy and xRz or yRx and zRx then ¬(yRz) and ¬(zRy) (i.e., neither left-, nor right-Euclidean).
i. equivalence iff it is both reflexive, symmetric, and transitive.
j. connected iff xRy or/and yRx.
k. acyclic iff x1Rx2, x2Rx3, …, xn-1Rxn implies ¬(xnRx1), for any natural n > 0 and distinct x1, …, xn ∈ S.

3. A constraint is a first order logic formula that has all its variable occurrences bound to a universal quantifier (i.e., ∀ -for any- and 
∃ - there is). For example, all above 11 properties are constraint types of dyadic relations.

4. A constraint is satisfied by a set of values for its variables if it has value true for them; otherwise, it is violated. A constraint set is 
satisfied by a set of values for all its variables if all its constraints are satisfied.

5. A constraint set is incoherent iff it is satisfied only by the corresponding empty set. For example, according to the first order logic 
laws of non-contradiction (“nothing can be both true and false simultaneously”) and excluded middle (“everything is either true 
or false, but not neither”), the sets {R reflexive, R irreflexive} and {R symmetric, R asymmetric} are incoherent, for any non-void 

https://pubmed.ncbi.nlm.nih.gov/27812521/
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dyadic relation R.
6. A constraint set Γ implies a constraint c iff c is true whenever all constraints of Γ are true. For example, as acyclicity implies ir-

reflexivity for any dyadic relation R (as any xRx corresponds to a cycle of length 0), the set {R acyclic} implies the constraint R 
irreflexive.

7. A constraint c is redundant in a constraint set Γ iff {Γ - c} implies c. For example, in the set {R acyclic, R irreflexive}, R irreflexive 
is redundant.

8. A constraint set is minimal iff it does not contain any redundant constraint.

     Obviously, any DBMS must accept only satisfiable and coherent set of constraints and should enforce only minimal ones. Moreover, 
universal relations should never be stored as such, but only as queries/views computable according to the corresponding Cartesian 
products.

     In what follows, we consider any finite set S having at least 4 elements (which is a norm in dbs) and any dyadic non-void relation R 
⊆ S 2 over it; the following propositions and corollaries hold:

Propositions

1. (i) (R reflexive ⇒ ¬(R irreflexive)) ∧ (R irreflexive ⇒ ¬(R reflexive)).
(ii) (R symmetric ⇒ ¬(R asymmetric)) ∧ (R asymmetric ⇒ ¬(R symmetric)).

2. (i) R asymmetric ⇒ R irreflexive.
(ii) R asymmetric ⇒ ¬(R Euclidean).
(iii) R transitive ⇒ ¬(R inEuclidean).
(iv) R intransitive ⇒ R irreflexive.
(v) R intransitive ⇒ ¬(R Euclidean).
(vi) R inEuclidean ⇒ R irreflexive.
(vii) R connected ⇒ ¬(R intransitive).
(viii) R connected ⇒ ¬(R inEuclidean).

3. R acyclic ⇒ R asymmetric ∧ R inEuclidean.
4. R Euclidean ⇔ R symmetric ∧ R transitive.
5. (i) R is both transitive and intransitive iff there are no distinct elements x, y, z ∈ S such that xRy ∧ yRz.

(ii) R transitive ∧ R intransitive ⇒ R inEuclidean.
(iii) R transitive ∧ R intransitive ⇒ ¬(R connected).

6. (i) R is both Euclidean and inEuclidean iff there are no distinct elements x, y, z ∈ S such that xRy ∧ xRz or such that yRx ∧ zRx.
(ii) R Euclidean ∧ R inEuclidean ⇒ R intransitive.

7. R irreflexive ∧ R transitive ⇒ R asymmetric.
8. R symmetric ∧ R intransitive ⇒ R inEuclidean.
9. (i) R symmetric ∧ R inEuclidean ⇒ R intransitive.

(ii) R symmetric ∧ R inEuclidean ⇒ ¬(R connected).
10. R asymmetric ∧ R transitive ⇒ R acyclic.
11. (i) R symmetric ∧ R connected ⇒ R Euclidean.

(ii) R symmetric ∧ R connected ⇒ ¬(R intransitive).
12. (i) R Euclidean ∧ ¬(R inEuclidean) ⇒ ¬(R intransitive).

(ii) R Euclidean ∧ ¬(R inEuclidean) ⇒ ¬(R acyclic).
(iii) R inEuclidean ∧ ¬(R Euclidean) ⇒ ¬(R connected).

13. R transitive ∧ R inEuclidean ⇒ ¬(R connected).
14. R intransitive ∧ R Euclidean ⇒ R inEuclidean.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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15. R intransitive ∧ R inEuclidean ⇒ ¬(R connected).
16. R acyclic ∧ R connected ⇒ R transitive.
17. R intransitive ∧ R acyclic ⇒ ¬ (R connected).
18. R inEuclidean ∧ R connected ⇒ R acyclic.
19. R acyclic ∧ R connected ⇒ R inEuclidean.
20. R connected ∧ R reflexive ∧ (R symmetric ∨ R Euclidean) ∨ R connected ∨ R equivalence ⇔ R universal.

Corollaries

1. Any constraint set containing any following pair of constraints is incoherent:
(i) R reflexive ∧ R irreflexive.
(ii) R symmetric ∧ R asymmetric.

2. (i) Any constraint set containing (R asymmetric ∨ R intransitive ∨ R inEuclidean ∨ R acyclic) ∧ R reflexive is incoherent.
(ii) Any constraint set containing R acyclic ∧ R symmetric is incoherent.
(iii) Any constraint set containing (R asymmetric ∨ R intransitive ∨ R acyclic) ∧ R Euclidean is incoherent.
(iv) Any constraint set containing R transitive ∧ R inEuclidean is incoherent.
(v) Any constraint set containing R connected ∧ (R intransitive ∨ R inEuclidean) is incoherent.
(vi) Any constraint set containing (R irreflexive ∨ R asymmetric ∨ R intransitive ∨ R inEuclidean ∨ R acyclic) ∧ R equivalence is 
incoherent.
(vii) Any constraint set containing (R asymmetric ∨ R intransitive ∨ R inEuclidean ∨ R acyclic) ∧ R irreflexive is not minimal, as 
irreflexivity is redundant (i.e., (asymmetry ∨ intransitivity ∨ inEuclideanity ∨ acyclicity) ⇒ irreflexivity).

3. (i) Any constraint set containing (R irreflexive ∨ R asymmetric ∨ R inEuclidean) ∧ R acyclic is not minimal, as irreflexivity, asym-
metry, and inEuclideanity are redundant (i.e., acyclicity ⇒ (irreflexivity ∧ asymmetry ∧ inEuclideanity)).
(ii) Any constraint set containing R symmetric ∧ R Euclidean (as symmetry is redundant) or R transitive ∧ R Euclidean (as tran-
sitivity is redundant), or R symmetric ∧ R transitive ∧ R Euclidean (as Euclideanity is redundant), or R equivalence ∧ R Euclidean 
∧ R reflexive or R equivalence ∧ R reflexive ∧ R symmetric ∧ R transitive (as either equivalence or reflexivity and Euclideanity, or 
reflexivity, symmetry, and transitivity, respectively, are redundant) is not minimal (i.e., Euclideanity ⇔ symmetry ∧ transitivity, 
Euclideanity ∧ reflexivity ⇔ equivalence, and reflexivity ∧ symmetry ∧ transitivity ⇔ equivalence).

4. (i) Any constraint set containing (R reflexive ∨ R symmetric ∨ R Euclidean ∨ R equivalence ∨ R connected) ∧ R transitive ∧ R 
intransitive is incoherent.
(ii) Any constraint set containing (R irreflexive ∨ R asymmetric ∨ R inEuclidean) ∧ R transitive ∧ R intransitive is not minimal, 
as irreflexivity, asymmetry, and inEuclideanity are redundant (i.e., transitivity ∧ intransitivity ⇒ irreflexivity ∧ asymmetry ∧ 
inEuclideanity).

5. (i) Any constraint set containing R Euclidean ∧ R inEuclidean ∧ R equivalence is incoherent.
(ii) Any constraint set containing R intransitive ∧ R Euclidean ∧ R inEuclidean is not minimal, as intransitivity is redundant (i.e., 
Euclideanity ∧ inEuclideanity ⇒ intransitivity).

6. (i) Any constraint set containing R irreflexive ∧ R symmetric ∧ R transitive is incoherent.
(ii) Any constraint set containing R irreflexive ∧ R asymmetric ∧ R transitive is not minimal, as asymmetry is redundant (i.e., 
irreflexivity ∧ transitivity ⇒ asymmetry).

7. (i) Any constraint set containing R symmetric ∧ R intransitive ∧ R inEuclidean is not minimal, as inEuclideanity is redundant (i.e., 
symmetry ∧ intransitivity ⇒ inEuclideanity).
(ii) Any constraint set containing R symmetric ∧ R transitive ∧ R intransitive ∧ R Euclidean ∧ R inEuclidean is not minimal, as 
Euclideanity and inEuclideanity are redundant (i.e., symmetry ∧ transitivity ∧ intransitivity ⇒ Euclideanity ∧ inEuclideanity).

8. (i) Any constraint set containing R symmetric ∧ R inEuclidean ∧ R connected is incoherent.
(ii) Any constraint set containing R symmetric ∧ R intransitive ∧ R inEuclidean is not minimal, as intransitivity is redundant (i.e., 
symmetry ∧ inEuclideanity ⇒ intransitivity).

https://pubmed.ncbi.nlm.nih.gov/27812521/
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(iii) Any constraint set containing R symmetric ∧ R transitive ∧ R intransitive ∧ R Euclidean ∧ R inEuclidean is not minimal, as 
transitivity and intransitivity are redundant (i.e., symmetry ∧ Euclideanity ∧ inEuclideanity ⇒ transitivity ∧ intransitivity).

9. Any constraint set containing R asymmetric ∧ R transitive ∧ R acyclic is not minimal, as acyclicity is redundant (i.e., asymmetry 
∧ transitivity ⇒ acyclicity).

10. (i) Any constraint set containing R symmetric ∧ R intransitive ∧ R connected is incoherent.
(ii) Any constraint set containing R symmetric ∧ R Euclidean ∧ R connected is not minimal, as Euclideanity is redundant (i.e., 
symmetry ∧ connectivity ⇒ Euclideanity).
(iii) Any constraint set containing R symmetric ∧ R transitive ∧ R connected is not minimal, as transitivity is redundant (i.e., 
symmetry ∧ connectivity ⇒ transitivity).
(iv) Any constraint set containing R reflexive ∧ R symmetric ∧ R connected ∧ R equivalence is not minimal, as equivalence is re-
dundant (i.e., reflexivity ∧ symmetry ∧ connectivity ⇒ equivalence).

11. (i) Any constraint set containing R intransitive ∧ R Euclidean and not containing R inEuclidean is incoherent.
(ii) Any constraint set containing R acyclic ∧ R Euclidean and not containing R inEuclidean is incoherent.
(iii) Any constraint set containing R connected ∧ R inEuclidean and not containing R Euclidean is incoherent.

12. Any constraint set containing R transitive ∧ R inEuclidean ∧ R connected is incoherent.
13. Any constraint set containing R intransitive ∧ R Euclidean ∧ R inEuclidean is not minimal, as inEuclideanity is redundant (i.e., 

intransitivity ∧ Euclideanity ⇒ inEuclideanity).
14. Any constraint set containing R transitive ∧ R inEuclidean ∧ R connected is incoherent.
15. Any constraint set containing R transitive ∧ R acyclic ∧ R connected is not minimal, as transitivity is redundant (i.e., acyclicity ∧ 

connectivity ⇒ transitivity).
16. Any constraint set containing R intransitive ∧ R acyclic ∧ R connected is incoherent.
17. Any constraint set containing R inEuclidean ∧ R connected ∧ (R asymmetric ∨ R acyclic) is not minimal, as asymmetry and acy-

clicity are redundant (i.e., inEuclideanity ∧ connectivity ⇒ asymmetry ∧ acyclicity).
18. Any constraint set containing R connected ∧ R inEuclidean ∧ R acyclic is not minimal, as either inEuclideanity or acyclicity are 

redundant (i.e., inEuclideanity ∧ connectivity ⇒ acyclicity and acyclicity ∧ connectivity ⇒ inEuclideanity).
19. Any constraint set containing R connected ∧ R reflexive ∧ (R symmetric ∨ R Euclidean) ∨ R connected ∧ R equivalence is not 

fundamental, as it is universal (i.e., reflexivity ∧ connectivity ∧ (symmetry ∨ Euclideanity) ∨ connected ∧ equivalence ⇒ univer-
sality), and should instead be stored as a query/view computing S2.

     MatBase stores in its metacatalog these 19 above corollaries in four tables presented in the following subsections.

Table COROLARIES

     Table COROLARIES (see Figure 2) stores data about the corollaries on the coherence and minimality of constraint sets (a surrogate 
primary autogenerated key x, corollaries’ types, names, bodies, book volume, subsection, and page number in which they appear in 
[8], etc.). COROLARIES also stores data for all other 65 (E)MDM constraint types [1], not only for the 11 dyadic relation ones. Data from 
this table (which was manually entered) is used for providing users with context-sensitive questions, warnings, and error messages.

Table DRCCoherencies

     Table DRCCoherencies (see Figure 3) stores data about the coherency of the non-trivial dyadic relationship combinations (out of the 
211 - 1 = 2,047 possible ones). Abbreviations of the 12 columns of DRCCoherencies after the primary key x have the following meanings: 
Ch = Coherent?, C = Connected?, A = Acyclic?, Q = eQuivalence?, IE = InEuclidean?, E = Euclidean?, IT = InTransitive? , T = Transitive?, AS 
= Asymmetric?, S = Symmetric? IR = Irreflexive?, R = Reflexive?. 

     The unique combination numbers x are computed as the decimal equivalents of the corresponding binary ones, just like for all other 
tables storing constraint type combinations (where C is multiplied by 210 = 1024, A by 29 = 512, …, and R by 20 = 1, i.e., x = [R]+2*[IR]+
4*[S]+8*[AS]+16*[T]+32*[IT]+64*[E]+128*[IE]+256*[Q]+512*[A]+1024*[C]).

https://pubmed.ncbi.nlm.nih.gov/27812521/
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     For example, combinations {ASymmetric} and {ASymmetric, inEuclidean} have 8 and 136, respectively, as values for x (ASymmetric 
being multiplied by 23 and inEuclidean by 27) and are coherent, while the one for x = 41, i.e., {InTransitive, ASymmetric, Reflexive} is 
incoherent (as, according to Corollary 2(i), any intransitive or/and asymmetric dyadic relation cannot be reflexive as well).

Figure 2: MS Access MatBase COROLLARIES table for storing corollaries on the coherence and 
minimality of constraint sets.

Figure 3: MS Access MatBase DRCCoherencies table for storing non-trivial combinations of dyadic 
relation constraint types.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Obviously, Notes is a foreign key referencing the primary key x of table COROLLARIES, from which its combo-box displays the corre-
sponding values from the CorId and CorDescription columns for incoherent and not minimal combinations. The corresponding com-
bo-box row source SQL statement is the following:

     SELECT x, CorId & “. “ & CorDescription AS [CorollaryID, Body] FROM COROLLARIES 

     WHERE CorSection=”A.5.2” ORDER BY CorId & “. “ & CorDescription;

DRCCoherencies instance was automatically generated using SQL insert and update queries as follows: a query first inserted all 
non-trivial possible combinations (the trivial ones, i.e., those from Corollary 1, are not stored); then, queries were run for each of the 
other 18 incoherence results, marking corresponding combinations as incoherent. For example, the query corresponding to Corollary 
2(i) is the following one:

     UPDATE [DRCCoherencies] SET [Ch] = False, [Notes] = 14 WHERE [R] AND ([AS] OR [IT] OR [IE] OR [A]);

Finally, queries were run for all redundancy corollaries to update notes for the coherent but not minimal constraint set ones. For exam-
ple, the query corresponding to Corollary 2(vii) is the following:

     UPDATE [DRCCoherencies] SET [Notes] = 20 WHERE [Ch] AND ([AS] OR [IT] OR [IE] OR [A]);

     Generally, more than one redundancy corollary may apply to a constraint set. For example, the set {Reflexive, Symmetric, Transi-
tive, Euclidean, Equivalence} has Equivalence redundant according to corollary A.5.2.3 (ii) 0 (see row 10 from Figure 2) but also to 
corollary A.5.2.3 (ii) 2 (see row 23 from Figure 2), as well as Euclidean, according to corollary A.5.2.3 (ii) 1 (see row 22 from Figure 2). 
Consequently, there is also a table DRCAdditionalRedund in the metacatalog of MatBase for storing the rest of redundancies for combi-
nations having more than one; its structure is identical to the one of the table DRCRedundancies presented in the next subsection and 
its instance is also automatically populated with SQL INSERT statements. As this table is used only for automatically adding rows to 
the DRCRedundancies table and then for displaying accurate context-sensitive information and error messages, to keep things simple 
in this paper we are not providing more details on how it is used. 

Table DRCRedundancies

    Table DRCRedundancies (see Figure 4) stores data on the minimality of dyadic relation constraint sets. Column DRCCombination 
is a foreign key referencing the primary key x of table DRCCoherencies; column Notes is absolutely similar to the homonym one in 
table DRCCoherencies, except for the fact that it points to the subset of corollaries having type “Redundancy” (so in the corresponding 
combo-box row source SQL statement WHERE clause there is a CorType atom as well and-ed with the other ones); finally, the column 
Redundancy stores the redundant constraint types that make the corresponding constraint sets not minimal.

     As an example, for a constraint set having DRCCombination = 65, which corresponds in table DRCCoherencies to the line having x = 
65, which encodes a set of type {Euclidean, Reflexive} (as Euclideanity is multiplied by 26 and reflexivity by 20), there are three rows 
in table DRCRedundancies (see the selected rows from Figure 4) storing the fact that both symmetry and transitivity (according to the 
corollary A.5.2.3 (ii) 1, see row 22 from Figure 2), as well as equivalence (according to the corollary A.5.2.3 (ii) 2, see row 23 from 
Figure 2) are to be added as redundant ones to such constraint sets.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Figure 4: MS Access MatBase DRCRedundancies table for storing redundant constraint types 
of not minimal dyadic relation constraint sets.

The instance of DRCRedundancies was also automatically generated by running SQL queries for each redundancy corollary. For exam-
ple, for corollary A.5.2.3 (ii) 1 (see row 22 from Figure 2 and, e.g., row 20 from Figure 3), the following two SQL statements were run 
for inserting the first two selected lines from Figure 4:

     INSERT INTO DRCRedundancies (DRCCombination, [Notes], Redundancy)

     SELECT x, [Notes], “S” FROM DRCCoherencies WHERE [Ch] AND [E];

     INSERT INTO DRCRedundancies (DRCCombination, [Notes], Redundancy)

     SELECT x, [Notes], “T” FROM DRCCoherencies WHERE [Ch] AND [E];

     Please note that these SQL statements need to be recursively run up until no new redundancy is added to DRCRedundancies. For 
example, let us assume that a SQL statement called Q1 is run first for adding acyclicity to all constraint sets containing asymmetry and 
transitivity; obviously, no row would be inserted for the set {Irreflexive, Transitive}; then, assume that a SQL statement called Q2 is run 
afterwards for adding asymmetry as redundant to all constraint sets containing irreflexivity and transitivity; now, the set {Irreflexive, 
Transitive} becomes {Irreflexive, Transitive, Asymmetric}; obviously, Q1 must be run one more time for adding acyclicity as well to this 
set.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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MatBase Algorithm DRCSCMEA 

     When a user tries to add a new constraint c to a dyadic relation R (over a set S and having an associated constraint set C) by clicking 
the corresponding checkbox shown in Figure 1, MatBase is first computing the x value of this new constraint set and is looking for it in 
table DRCCoherencies. If it doesn’t find it, which only occurs when this set also contains the negation of c (e.g., c = Reflexivity and C con-
tains Irreflexivity), then it unchecks the corresponding box and displays the appropriate error message. If it finds it but corresponding 
to an incoherent combination, it rejects it as well, similarly. If the corresponding combination is coherent but has in table DRCRedun-
dancies a Universal redundancy (i.e., the new constraint set corresponds to a universal relation), then it informs the user about it and 
asks him/her whether replacing R with a view computing S2 is desired; if the answer is Yes, then it proceeds accordingly, otherwise it 
automatically unchecks the corresponding box. Finally, in all other cases it checks whether the current R’s data instance satisfies c and 
if this is not the case it rejects c as well, similarly to the above cases.

     Whenever c is accepted both syntactically (i.e., from the coherence point of view) and semantically (i.e., from the data satisfiability 
one), MatBase adds to R’s form programming class (automatically generated immediately after table R has been added to the current 
db) calls to the corresponding c enforcement methods (which are publicly stored in its Constraint library) [12]. Moreover, if formerly 
not redundant constraints have become redundant, MatBase deletes from the R’s form programming class the code calling the corre-
sponding public enforcement methods. Finally, it also automatically checks all newly redundant constraints, according to DRCRedun-
dancies data for the newly x value from DRCCoherencies (e.g., if C = {Transitive}, c = Asymmetric, then C’ = {Transitive, Asymmetric, 
Acyclic, Irreflexive}, with Acyclic and Irreflexive being both redundant).

     When a user tries to remove a constraint c by unchecking its corresponding box shown in Figure 1, MatBase first computes the x 
value for the initial associated constraint set C and looks for c in DRCRedundancies table for x; if it finds it, then rejects the deletion 
attempt (as redundant constraints may not be deleted); otherwise, it removes from the R’s form programming class the calls to the 
constraint enforcement methods corresponding to c, then computes the corresponding new x value for C’ and, finally, unchecks all for-
merly redundant constraints that are not implied anymore (e.g., if C = {Transitive, Asymmetric, Acyclic, Irreflexive} and c = Transitive 
is deleted from it, then Acyclic is also deleted and C’ = {Asymmetric, Irreflexive}; note that irreflexivity is not deleted as well, because 
it remains implied by asymmetry).

     Figure 5 presents the corresponding pseudocode algorithm used by MatBase to enforce dyadic relation constraints, while guaran-
teeing the satisfiability, coherency, and minimality of such constraint sets. 

Results and Discussion 
Proposition 21.

Algorithm DRCSCMEA from Figure 5 has the following properties:

(i) its complexity is a constant (i.e., O(k)).

(ii) it guarantees the satisfiability, coherence, and minimality of dyadic relation constraint sets.

(iii) it is solid, complete, and optimal.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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Figure 5: MatBase pseudocode Algorithm DRCSCMEA.

Proof

      (i) Trivially, it does not contain any loop, so it always ends in finite time after a (small) number of finite steps.

      (ii) (satisfiability) Trivially, any void constraint set is satisfied by any data instance of any dyadic relation and any non-void con-
straint set that is satisfied by a data instance remains satisfied after removing one of its constraints; as DRCSCMEA does not accept 
adding a new constraint to the constraint set of a dyadic relation if its instance does not satisfy it as well, it follows, obviously, that 

https://pubmed.ncbi.nlm.nih.gov/27812521/
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DRCSCMEA guarantees the satisfiability of such constraint sets.

      (coherence) Trivially, any void constraint set is coherent and any non-void coherent constraint set remains coherent after removing 
one of its constraints; as DRCSCMEA does not accept adding a new constraint to the constraint set of a dyadic relation if this would 
result in an incoherent set, it follows, obviously, that DRCSCMEA guarantees the coherence of such constraint sets as well.

      (minimality) Trivially, any void constraint set is minimal; as DRCSCMEA is never enforcing redundant constraints but only signals 
them to the users for their info and is recomputing the subset of redundant constraints after accepting both adding and deleting a 
constraint, it follows, obviously, that DRCSCMEA guarantees the minimality of such constraint sets as well.

      (iii) (solidity) Trivially, DRCSCMEA accepts to add to or delete from dyadic relation constraint sets only dyadic relation constraint 
types.

      (completeness) Trivially, DRCSCMEA accepts to add to or delete from dyadic relation constraint sets all types of dyadic relation 
constraints.

      (optimality) Trivially, DRCSCMEA manages satisfiable, coherent, and minimal dyadic relation constraint sets in the minimum pos-
sible number of steps, with the minimum possible accesses to the 3 tables presented in the previous section (and which are stored on 
external disks).     Q.E.D.

     The actual corresponding algorithms (written both in MS VBA and .NET C# with embedded SQL, respectively) are a little bit more 
complex, both to gain execution speed (by avoiding unnecessary disk reads), to prevent users from making unwanted mistakes, and 
to provide maximum possible accuracy for the context-sensitive messages it displays. For example, whenever the current dyadic re-
lation R has no constraints and the user adds one, it accepts it immediately if the current R’s instance satisfies it, as there may not be 
any corresponding either incoherency or redundancy. For example, whenever the user unchecks a constraint box, even if the corre-
sponding deletion is possible MatBase displays a deletion confirmation message, does not proceed with the deletion if the request is 
not confirmed, and automatically undoes unchecking of the corresponding box. Moreover, if the request is confirmed and c is the only 
constraint of C, MatBase does not search for newly redundant constraints, as none may exist.

     Obviously, the ultimate goal of the design and development of dbs and db software applications is to provide customers, first of all, 
with the tools that are not only user-friendly, but, above all, guaranteeing the highest possible data quality for their dbs and informa-
tion extracted from them. If these tools do not guarantee the satisfiability and coherence of the associated constraint sets (be them 
enforced at the db or/and at the db software application levels), then junk data might (accidentally or purposely, it does not matter) 
be stored in their dbs, which leads to junk information extracted from them. Moreover, if these constraint sets are not minimal (which, 
yes, does not impact data quality), then the corresponding db software applications run unnecessarily slower, to the dissatisfaction of 
their customers. 

Conclusion

    We provided concise but accurate mathematical definitions for dyadic relations, their properties viewed as constraint types from the 
db perspective, as well as for the satisfiability, coherence, and minimality of such constraint sets.

     We presented and discussed the pseudocode algorithm used by MatBase, our intelligent DBMS prototype based on both the relatio-
al, entity-relationship data models, as well as on our (E)MDM (which incorporates the dyadic relation constraint types), for enforcing 
dyadic relation constraints, by guaranteeing the satisfiability, coherence, and minimality of such constraint sets, also including descrip-
tion of the tables from its metacatalog needed for managing the corresponding metadata.

    We proved that this algorithm actually guarantees both satisfiability, coherence, and minimality, while being fast, solid, complete, 
and optimal.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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    Moreover, this paper also proves the formidable power of using mathematics (in particular, the naïve theory of sets, relations and 
functions coupled with the first-order predicate calculus with equality) in dbs and db software applications design and development.
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