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Abstract

    For queuing systems with moving servers, the control policy which means delays of a begin-
ning service is introduced. In the capacity of efficiency index of systems is taken a customer’s 
average waiting time before service. Although it seems that it is a paradoxical idea to introduce 
delays of beginning service, it is shown that for some systems it gives a gain in a customer’s 
average waiting time before service. The class of queuing systems for which it is advisable to 
introduce delays is described. The form of an optimal function minimizing the efficiency index 
is found.

     It is shown that if the intervals between neighbor services have exponential distribution, then 
the gain in a customer’s average waiting time before service equals 10% and independent of 
parameter of exponential distribution. For uniform distribution such gain equals 3.5% and also 
independent of parameter of uniform distribution. The criterion to define for which systems the 
gain is greater are given. Some open problems and numerical examples demonstrating theoret-
ical results are given.

Keywords: queues with moving servers; a customer’s average waiting time; delay of beginning 
service; optimal function

Introduction

    At the beginning of the XX century the solving of many practical problems for systems with com-
plicated structures led to the appearance of a new field of investigations, which came to be known 
as queuing theory or queuing systems. The main objects for queuing systems are customers (which 
arrive at a system and should be served) and servers (which should give a service for customers). 
Pioneer papers of queuing systems belong to the worker of Copenhagen telephone company, Agner 
Erlang in the beginning of XX-th century. Later, Agner Erlang became well known scientist who can be 
considered as one of the founders of queuing theory. Essential contribution to queuing theory have 
been made by professors of Lomonosov Moscow State University B.V.Gnedenko, A.Ya.Khinchin Yu.K.
Belyaev (USSR, Russia), D.Cox, W.Smith (Great Britain), L.Kleinrock, T.Saaty, S.Ross, G.Newell (USA) 
and others. 
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    For optimization (minimization or maximization) of the chosen efficiency indices - queue length, a customer average waiting time, 
and others it is necessary to introduce various control strategies which play an important role from theoretical as well from practical 
point of view. From practical point of view such control strategy must be easy implemented in practice and give a gain in chosen effi-
ciency index.

     In this field of investigations, a lot of books [1, 2, 5, 9-11, 12, 23, 25] and papers [3, 4, 6, 17-22, 24, 26, 28], even the special journals 
(Queuing systems, Transportation Science, Transportation and Communication, Operation Research, Mathematics of Operation Research 
and others) are published today. 

     As a matter of development of queuing theory in the second part of the XX-th century the methods and approaches of queuing theory 
have been applied in investigating of traffic flows, airports, control of traffic flows in tunnels, shipping, transportation, communication 
systems, elevators and escalators systems, network of computers, vertical (elevators and escalators) transportation and others. The 
investigation of such systems was outside of the framework of methods and approaches of the classic queuing theory and led to an 
appearance of new branches of investigation, such as the system with moving servers. Although these systems have a complicated 
structure all of them are unified in one common idea - systems with moving servers. 

     Nowadays, systems with moving servers are not investigated so widely, because they have rather complicated and a random struc-
ture as customers arriving epochs, service beginning instants, service time are values of random processes, hence, it is necessary to 
develop the new methods and approaches for their investigation. Usage the methods and approaches of probability theory, stochastic 
processes, mathematical statistics, simulation, numerical analysis and other branches of mathematics allow to create theory of queu-
ing systems with moving servers, which can help to calculate different characteristics of the systems with moving servers, investigate 
various disciplines of service, create a control theory and take necessary decisions and recommendations for practical applications.

     Systems with moving servers can be considered also as multi-staged or multi-class queuing systems and for their investigation the 
models of these queues can be applied. Investigation of queues with moving servers leads to the construction and research of the new 
mathematical models and in the frames of such mathematical models the new methods of investigations are forming.

     A particular interest in this division are mathematical models of moving particles, which describe a behavior of a wide class of com-
plicated queuing systems with moving servers and could be successfully applied for traffic, public transportation systems, networks of 
computers, communication nets, medical, biological and other systems.

Construction of mathematical model

    Consider queuing system for which t1, t2,…,tn is the sequence of service starts instants. A stationary flow of customers with finite 
intensity arrives to service and this flow independent of ti, i=1,2,…,n,.. At the instant ti all customers that arrived over the interval [ti-1, 
ti) are served instantaneously, i.e. it is assumed that server has infinite volume. In the capacity of an efficiency index, we take a custom-
er’s average waiting time (CWT) before service which will be denoted w. Customer waiting time before service is defined as the time 
elapsed from the arrival of customer into the system until the next current service start. Similar models have been introduced in [13, 
14]. Let us assume that the sequence t1, t2,…,tn is a stationary renewal process. We introduce control the service start instants; for this 
purpose we turn from the sequence t1, t2,…,tn to the new sequence t1*, t2*,…, tn* using the following rule. 

    Denote η1= t1, η2=t2 -t1,…,ηn =tn - tn-1; ti* = ti -g(ηi), where g€G is the class of measurable and nonnegative functions. Further we can 
define the intervals between services in the controlled system as.

η1*= η1 +g(η1), η2*=η2+g(η2),…, ηn*=ηn +g(ηn)

Remark

     With an idea to introduce delays, first time we faced during our work in Lomonosov Moscow State University. The cleaning service 
women, who improved (reduced a passenger average waiting time) service in fact introduced the delay control policy but they could 
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not explain why. If two elevators came down to the first floor almost at the same time, the women delayed one of the elevators for 
cleaning, and only afterward they were done it was ready for use. The great A.N.Kolmogorov paid attention that the cleaning women 
do not know how they are improving service. 

     Assume that the sequence t1, t2,…,tn is a renewal process (η1, η2,…,ηn is identical and independent random variables) then according 
to [7] we have.

      (1) 

     Now it will be shown that formula (1) is true for any identically distributed (perhaps dependent) random variables.

Theorem 1

     Let η1, η2,…,ηn be identically distributed random variables (may be dependent). Then for this model (described above) the expression 
(1) is true.

Proof

    Let Si be the epoch of the arrival of the customer i, Ψ(Si) be a number of customers, who arrived at the epoch Si, Φi={S: Ψ(s)>0, S ∈ 
ti-1,ti)}, Vi be the waiting time of all customers, who arrived during the time interval [0, t].

     Then according to Campbell’s formula [8].

 

     Denote by wN the conditional an average waiting time of all customers, for given η1, η2,…,ηn.

     Then

 
 

     Where η is a random variable with distribution function F(x).

 

     Similarly, for the variance we have.

     Generally, formulas (1) and (2) are true for any identically distributed random variables ηi for which ηi ≥ 0,  < ∞ for all i.

     Now we shall take delays into account, i.e. from the random variables η1, η2,...,ηn,... we pass to random variables η1*, η2*,...,ηn*,... where

ηi* = ηi + g(ηi), i = 1,2,..., g ∈ G.

     Here G is a class of measurable and non-negative functions. Let be the expectations and variance of the delayed waiting 
times until service. Our interest concerns the following problem. For which systems can the introduction of delays diminish w* (i.e. 
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give better service). Similarly to (1) and (2) we have.

 

    Denote w(g) a customer’s average waiting time in a system with control function g, w(0)=w. M(g)=w(g)-w, c = Eη2 /2Eη. Following 
[13, 14] we introduce the following conceptions.

Definition 1.

     Service is improvable if there exists a function g(x)€G such that M(g)<0.

Theorem 1

     Service can be improved if there exist x0 < c such that F(x0) > 0.

Definition 2

     The function g*(x) is called an optimal if.

min M(g(x)) = M(g*(x))

g€G

Theorem 2

     Under the conditions of Theorem 1 the optimal function has the following form.

g*(x) = max(0, c1-x) = (c1-x)+

     Where c1 is the unique solution of the equation.

     The proofs of Theorem 1 and 2 can be found in [12].

Example 1

    Let us put F(x) = 1-exp(-x), x ≥ 0. The stationary flow of customers with finite intensity arrives to service. Numerical computations 
yield w = 1.0; w*=0.90; ϭ2 = 1, ϭ*2 = 0.67; The gain in CWT is 10% but in variance 33%.

    Let us try to change the intensity of the intervals between neighbor instants of services. Below in Table 1 there are the results of 
simulation of this system for various values of intensity of input flow. Simulation shows that the gain in CWT is changing around 10%.

    Below in Fig. 1 the behavior of CWT depending on delays is given. The graph shows that there exists some optimal delay function 
where CWT attains its minimum value and afterward it increases.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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λ gain (%) 
(w-w*)/w

λ gain (%) 
(w-w*)/w

0.20 9.91% 0.80 9.94
0.25 9.96% 0.85 10.0
0.30 9.97% 0.90 9.99
0.35 9.88% 0.95 9.81
0.40 9.99% 1.00 10.01
0.45 9.83% 1.05 9.86
0.50 9.89% 1.10 9.91
0.55 9.89% 1.15 9.83
0.60 9.92% 1.20 9.81
0.65 9.86% 1.25 9.82
0.70 9.96% 1.30 10.0

Table 1: (Gain in a customer’s average waiting time for system with exponential distribution of intervals between services).

Figure 1

     The following question arises. It seems that for this system the gain independent of the intensity of the intervals between services.

Theorem 3

     If the intervals between neighbor services have exponential distribution, then under the conditions of Theorem 1.

 

     Proof. . Routine transformation and calculations show that

       
                                                                                                       (3)

https://pubmed.ncbi.nlm.nih.gov/27812521/
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    and w = w(0) = Eη2/2 Eη = 1/λ. It follows from Theorem 2 that at the point c1 a customer average waiting time w(c1) attains its min-
imum value then.

    

                                                                        (4)

     Combining (3) and (4) we have.

α2 c*2 - 2exp(-αc*)=0    (5)

     As the equation (5) has a unique solution, hence αc1=constant.

     The simple calculations yield that.

     Thus, the gain in CWT for the model where the intervals between neighbor instants of services have exponential distribution is 10%. 

    Consider the model where intervals between neighbor services are independent and have uniform distribution at the interval [0, 
b]. Let t1, t2,…, tn be the instants when service starts in system. We assume ti =id +xi, where xi independent and identically distributed 
random variables having uniform distribution at the interval [-1/2,+1/2], d = 1. 

     Such scheme describes, for example, the behavior of a public transport where id is an ideal schedule t1, t2,…, tn is real timetable. Here 
we have.

ηi = ti -ti-1 = = id +xi -(i-1)d-xi-1 = d + (xi -xi-1).

Example 2

     Let d=1 and xi have a uniform distribution at the interval [-1/2.+1/2]. Simple calculations yield .

w = 0.583; σ2= 0.160; and w* = 0.5626, σ2*= 0.156;

     The gain in CWT is 3.49%. Below in Table 2 there are the results of simulation for various values of intensity of input flow for systems 
where intervals between services have uniform distribution.

Theorem 4

     If the intervals between neighbor services have uniform distribution at the interval [0, b] then.

     i.e. the gain in CWT is 3.5% and independent of b.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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λ gain, 
(w-w*)/w

λ gain, 
(w-w*)/w

1.1 3.46% 2.6 3.60%
1.2 3.55% 2.7 3.49%
1.3 3.49% 2.8 3.59%
1.4 3.60% 2.9 3.54%
1.5 3.46% 3.0 3.50%
1.6 3.46% 3.1 3.54%
1.7 3.41% 3.2 3.50%
1.8 3.50% 3.3 3.47%
1.9 3.34% 3.4 3.51%
2.0 3.46% 3.5 3.47%
2.1 3.48% 3.6 3.51%
2.2 3.48% 3.7 3.49%
2.3 3.48% 3.8 3.48%
2.4 3.50% 3.9 3.57%
2.5 3.47% 4.0 3.61%

Table 2: (Gain in a customer’s average waiting time for system with exponential distribution of intervals between services).

Proof

     Assume that the intervals between neighbor instants of services have uniform distribution at the interval [0, b]. Routine transfor-
mations and calculations give.

     According to Theorem 2 at the point c1 a customer average waiting time w(c) attains its minimum value then.

     
                                                                                (4)

     Simple calculations yield that from (4) it follows that.

c*3 + 3c* b2 - b3 = 0

     Hence,

(w(0) -w*)/w = (bc*2 - 2c*3)/(b(b2 + c*2) = const.=0.35

     Let us now compare examples 1 and 2. In example 1 we have a gain in customer average waiting time before service is around 10%, 
while in example 2 is only 3.5%. 

     The following question arises. For which distributions the gain in CWT is greater?

Definition 3

     Introduce k = Eη2 /(E η)2 and call it strong coefficient of variation.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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     Remind that Var(η)/(Eη)2 is called coefficient of variation [23].

THEOREM 5

     If for two systems with service distribution functions F1(x) and F2(x) and strong coefficient of variations k1 and k2 and the following 
expression is held.

1/k1
1/2 ≤ [(k2+1)1/2-1]/k2

     Then w1*= w1(g*))/w1 ≤ w2* = w2(g*))/w2 and hence (w2 - w2*)/w ≤ (w1 - w1*)/w i.e. service for the second system can be improved 
better.

Example 3

     Let us put F1(x)=1-exp(-x) and F2(x)= x/2, x€[0, 2] i.e. the distribution. Numerical calculations yield:

     w1=1, g1*(x) = (1-x)+, k1=2, w1(g1*)=1/2; 

     w2=2/3, g2*(x) = (1-x)+, k2=4/3, w2(g2*)=1/2

     Since k1=2, 1/ k1
1/2 ~ 0.71; and k2 = 4/3; [(k2+1)1/2- 1]/k2 ~ 0.97;

     Then w1*/ w1=1/2 < w2* /w2 = 1/3 and hence (w1 - w1*)/w1 = 1/2 > (w2 - w2*)/w2 =1/4.

Open Problems 1

     For any one parametrical distribution the gain in CWT is fixed depending only on the type of distribution but independent of the 
parameters of distribution.

     It is obviously that if for two distribution functions F(x) and G(x) is held.

F(x) ≥ G(x) or G(x) ≥ F(x) for all x (*)

     and

1 1

2 2 2
1 1 1( ) ( ) ( ) ( ) (**)

c c

x c dF x x c dG x c
∞ ∞

− = − =∫ ∫
 

     Then F(x) = G(x) for any x.

Open Problem 2

     The question is: If the condition (*) is not held but (**) is true what we can say about F(x) and G(x) or what is relation between F(x) 
and G(x)?

Conclusion

     Mathematical models describing the behavior of wide class of queues with moving servers are constructed. The prototypes of such 
models can be public transportation, traffic, communication systems airport facilities and others. The control function which means 
delays of beginning service is introduced. The class of systems for which it is advisable to introduce delays is described. The form of 
optimal control function minimizing a customer’s average waiting time is derived. It is shown that the optimal delay function has linear 
form. Numerical examples demonstrating theoretical results are given. It is shown that for systems where intervals between services 
have exponential or uniform distribution the gain in a customers’ average waiting time independent of the parameters of these dis-
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tributions. The criterion which allows to define for which systems the gain in a customers’ average waiting time is greater has been 
derived.
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