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Abstract

     This paper presents the current version of our (Elementary) Mathematical Data Model ((E)
MDM), which is based on the naïve theory of sets, relations, and functions, as well as on the 
first-order predicate calculus with equality. Many real-life examples illustrate its 4 types of sets, 
4 types of functions, and 76 types of constraints. This rich panoply of constraints is the main 
strength of this model, guaranteeing that any data value stored in a database is plausible, which 
is the highest possible level of syntactical data quality. An (E)MDM example scheme is presented 
and contrasted with some popular family tree software products. 

Keywords: (Elementary) Mathematical Data Model; MatBase; Naïve theory of sets relations and 
functions; First order predicate calculus with equality; Database design; Modelware

Introduction

    The (Elementary) Mathematical Data Model ((E)MDM) was introduced first in Romania [1-4] and 
then internationally in [5-7]. Its main advantage is its plethora of constraint types that grew continu-
ously every year, whenever a new real-life example was encountered. The last published paper on (E)
MDM [8], considered only 60 explicit constraint types; currently, there are 76.

   Data quality is paramount for any software system: if you let a database (db) store unplausible 
data (“garbage in”), then both information and knowledge computed on that data will be unplausible 
(“garbage out”). Software systems cannot decide whether a data value is correct or not: for example, 
most probably, only a handful of people know exactly what was HM Queen Elizabeth II height on her 
death bed; how could a software application know it? But any software application must accept for 
db storing only plausible values: for example, for current humans, height must be between 40cm 
(otherwise chances of survival are almost zero) and 275cm (Robert Wadlaw, the tallest man ever, had 
272cm).

    Constraints are formalizing business rules. If you do not enforce a single such rule, your db might 
store unplausible values. Dually, of course, if you add to your software system rules that do not exist in 
the corresponding subuniverse of discourse, you prevent storing plausible data values in the db. This 
is why discovering and enforcing all business rules governing the subuniverse you model is crucial.
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     Classifying constraints in mathematical types is not only beneficial to data modeling but also allows for their algorithmic enforce-
ment through automatically generated software code. Thus, (E)MDM is also a modelware tool, i.e., a member of the family of the 5th 
generation of programming languages [9].

     Database theory is pure applied naïve theory of sets, relations, and functions, as well as of the first-order predicate logic with 
equality (which formalizes both constraints, as closed clauses, and queries, as open ones). As this is almost entirely taught during K12 
studies, we’ve added (Elementary) to the name of our model. 

     We introduced (E)MDM as a cornerstone modelling level between the Entity-Relationship Data Models (E-RDM) and Relational Data 
Model (RDM) schemata [10], for both validating and refining the E-RDM models before translating them into RDM schemata and sets 
of non-relational constraints that must be enforced by the software applications managing the corresponding dbs.

     The following section presents the current version of the (E)MDM. Section 3 presents an example of (E)MDM modeling. Section 4 
discusses it against some popular family tree software products. Section 5 abstracts related work. The paper ends with conclusion and 
a reference list. 

The current version of (E)MDM

     A(n) (E)MDM db scheme is a quadruple DKS = < S, M, C; P >, where S is a finite non-empty poset by inclusion, M is a finite 
non-empty set of mappings defined on and taking values from the sets of S, C is a finite non-empty set of constraints (i.e., closed Horn 
clauses of the first-order predicate logic with equality) over sets in S and/or mappings in M, and P is a finite set of Datalog¬ programs 
also over sets in S and mappings in M. Whenever P is empty, DKS is a db scheme, otherwise it is a knowledge base one. 

The poset of sets

(S, ⊆) is a poset of sets, with S = Ω ⊕ V ⊕ *S ⊕ SysS, where: 

	Ω = E ⊕ R (the non-empty collection of object sets), where: 
	E is a non-empty collection of atomic entity-type sets, e.g., PEOPLE, COUNTRIES, PRODUCTS.
	R is a collection of relationship-type sets, e.g., NEIGHBOUR_COUNTRIES ⊂ COUNTRIES x COUNTRIES, STOCKS ⊂ PRODUCTS x 

WAREHOUSES.
	V is a non-empty collection of value sets, e.g., R_C = {“r”, “o”, “y”, “g”, “b”, “i”, “v”}, SEXES = {“F”,”M”}, [0,16] ⊂ NAT(2), ASCII(32) ⊂ 

ASCII(n), CURRENCY(8) ⊂ RAT(10,2), [1/1/100, Today()] ⊂ DATETIME (with NAT(n) being the subset of naturals of at most n 
digits, RAT(n, m) the subset of rationals of at most n digits before the decimal point and m after it, ASCII(n) the subset of the freely 
generated monoid over the ASCII alphabet only including strings of maximum length n, etc.).

	*S is a collection of computed sets, e.g., MALES, FEMALES, UNPAID_BILLS, FREE_COUNTRIES.
	SysS is a collection of system sets, e.g., ∅ (the empty set), NULLS (the distinguished countable set of null values), BOOLE = {true, 

false}, NAT(n), RAT(n, m), ASCII(n), DATETIME (the set of date and time values).

     In RDM schemata, generally, the object sets are tables, the computed sets are views (queries), the system sets are corresponding db 
management system (RDBMS) data types, and the value sets are their needed subsets. 

The set of mappings

M = A ⊕ F ⊕ *M ⊕ SysM, where: 

	A ⊂ Hom(S-SysS ⊕V, V) is the non-empty set of attributes, e.g., x : PEOPLE ↔ NAT(10), FirstName : PEOPLE → ASCII(64), Birth-
Date : PEOPLE → [1/1/-6000, Today()], Sex : PEOPLE → {“F”, “M”), x : COUNTRIES ↔ NAT(3), CountryName : COUNTRIES → AS-
CII(128), TelPrefix : COUNTRIES → NAT(4), Stock : STOCKS → [0, 100], Amount : UNPAID_BILLS → (0, 100000], where ↔ denotes 
injections (one-to-one functions) and x is our notation for object identifiers, i.e., functions to be implemented as autonumber 
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surrogate primary keys. 
	F ⊂ Hom(S-SysS ⊕V, S-SysS ⊕ V) is the non-empty set of structural functions, e.g., BirthPlace : PEOPLE → CITIES, Capital 

: COUNTRIES ↔ CITIES, Country : CITIES → COUNTRIES, Representative : DISTRICTS ↔ PEOPLE, Customer : UNPAID_BILLS → 
CUSTOMERS.

	*M is the set of computed mappings, e.g., BirthCountry = Country ° BirthPlace : PEOPLE → COUNTRIES, Mother • Father : PEOPLE 
→ PEOPLE x PEOPLE, Senator1 • Senator2 : STATES → PEOPLE x PEOPLE, Age = Years(Today()-BirthDate) : PEOPLE → [0, 175].

	SysM is the set of system mappings, e.g., 1S (the unity function of a set S), card(S) (the cardinal of a set S), Im(f), PreIm(f), Ker(f) 
(the image, pre-image, and kernel of a function f), Len, Lft, Rgt, Mid (the length, left, right, and middle parts of a string), etc.

     In RDM schemata, the attributes, structural functions, and computed mappings are implemented as table or/and view (query) col-
umns, with structural functions being foreign keys.

The set of constraints

C = SC ⊕ MC ⊕ OC ⊕ SysC, where:

Set constraints

There are two blocks of set constraints: general and dyadic relation ones.

	SC = SGC ⊕ SDRC  is the set of set constraints, where:
	SGC = SIC ⊕ SEC ⊕ SDC ⊕ SUC ⊕ SDSC is the set of general set constraints, where: 
	SIC is the set of inclusion constraints, e.g., DRIVERS ⊆ EMPLOYEES ⊆ PEOPLE ⊆ CUSTOMERS, PREEQUISITES ⊆ COURSES.
	SEC is the set of set equality constraints, e.g., TAKEOFF_AIRPORTS = AIRPORTS, LANDING_AIRPORTS = AIRPORTS.
	SDC is the set of disjointness constraints, e.g., ELECTED_OFFICIALS ∩ STATE_CONTRACTORS = ∅, INCOMPATIBLE_DRUGS 

∩ OTHER_DRUGS = ∅.
	SUC is the set of union constraints, e.g., INCOMPATIBLE_DRUGS = AMINOGLYCOSIDES ∪ CHLORDIAZEPOXIDE ∪ DIAZ-

EPAM ∪ DIGITALIS_ GLYCOSIDES ∪ PENTOBARBITAL ∪ PHENYTOIN ∪ SECOBARBITAL ∪ SODIUM_BICARBONATE ∪ 
THEOPHYLLINE_DERIVATIVES.

	SDSC is the set of direct sum constraints, e.g., MPS ⊆ COMMONERS ⊕ LORDS, CONGRESSMEN = REPRESENTATIVES ⊕ 
SENATORS.

Among these 5 constraint types, only inclusion is fundamental: equalities are double inclusions, and the 3 remaining ones are partic-
ular cases of equality.

	SDRC = DRRC ⊕ DRIRC ⊕ DRSC ⊕ DRASC ⊕ DRTC ⊕ DRITC ⊕ DREC.

DRIEC ⊕ DRQC ⊕ DRAC ⊕ DRCC is the set of dyadic relation constraints, where: 

	DRRC is the set of dyadic relation reflexivity constraints, e.g., HasSameColorAs, HasSameSizeAs, HasSameShapeAs, IsAt-
Least-AsComplicatedAs, LivesInSameCityAs, IsBloodRelatedTo, WeighsNo-MoreThan.

	DRIRC is the set of dyadic relation irreflexivity constraints, e.g., IsInFrontOf, OccuredEarlier(Later)Than, IsAdjoinTo, IsLar-
gerThan, IsSmallerThan, IsLeftOf, IsRightOf, Prerequisites, AirportConnections, Distances.

	DRSC is the set of dyadic relation symmetry constraints, e.g., : HasSameSizeAs, HasSameShapeAs, IsAdjoinTo, HasSameColor-
As, LivesInSameCityAs, IsBloodRelatedTo, IsSiblingOf, WeighsNoMoreThan, IsAtLeastAsComplicatedAs, IsLocatedWithinXmOf, 
IsMarriedTo, WentOnDateWith, AirportConnections.

	DRASC is the set of dyadic relation asymmetry constraints, e.g., IsFatherOf, IsMotherOf, IsChildOf, IsYounger(Older)Than, 
OccuredEarlier(Later)Than, WeighsMoreThan, IsLargerThan, IsSmallerThan, IsLeftOf, IsRightOf, IsInFrontOf, Prerequisites, Dis-
tances.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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	DRTC is the set of dyadic relation transitivity constraints, e.g., IsYounger(Older)Than, OccurredEarlier(Later)Than, Weighs(-
No)MoreThan, IsLargerThan, IsSmallerThan, IsBloodRelatedTo, IsAtLeastAsComplicatedAs, IsInFrontOf, HasArrivedSooner(Lat-
er)Than, IsPoorer(Richer)Than, IsAnAncestor(Descendant)Of, HasSameShapeAs, HasSameSizeAs, HasSameColorAs, LivesInSa-
meCityAs, IsDividing, IsLeftOf, IsRightOf, IsAncestorOf, IsDescendantOf, AirportConnections, Distances.

	DRITC is the set of dyadic relation intransitivity constraints, e.g., IsMotherOf, IsFatherOf, IsChildrenOf, Prerequisites.
	DREC is the set of dyadic relation Euclideanity constraints, e.g., IsBloodRelatedTo, HasSameShapeAs, HasSameSizeAs, Has-

SameColorAs, LivesInSameCityAs, IsSiblingOf (in (E)MDM, a Euclidean dyadic relation is both left and right Euclidean).
	DRIEC is the set of dyadic relation inEuclideanity constraints, e.g., IsMotherOf, IsFatherOf, IsChildrenOf, IsAncestor (in (E)

MDM, an inEuclidean dyadic relation is neither left, nor right Euclidean).
	DRQC is the set of dyadic relation equivalence constraints, e.g., IsAtLeastAsComplicatedAs, HasSameCitizenshipAs, HasSame(-

Time)Length-As, HasSameReligionAs, HasSameChildrenAs, HasSameEmployerAs, Has-Same(Time)LengthAs, WeighsNoMore-
Than, HasSameColorAs, HasSame-SizeAs, HasSameRaceAs, HasSameShapeAs, LivesInSameCityAs, Graduated-SameSchool(Alum-
ni)As, IsBloodRelatedTo.

	DRAC is the set of dyadic relation acyclicity constraints, e.g., IsFatherOf, IsMotherOf, IsChildOf, IsYounger(Older)Than, Oc-
curedEarlier(Later)Than, WeighsMoreThan, IsLargerThan, IsSmallerThan, IsLeftOf, IsRightOf, IsInFrontOf, Prerequisites.

	DRCC is the set of dyadic relation connectivity constraints, e.g., BelongsTo-SameGroupAs, no matter what group is involved, 
from the algebraic to social media ones (in (E)MDM, connectivity is weak, i.e., it includes x ≠ y, for any pair <x, y> of connected 
elements, which is also called by some authors connex or completeness).

     None of these 11 constraint types is fundamental, as dyadic relations are particular cases of homogeneous binary function products 
(see the corresponding block from HBFPC).

     The grand total of set constraint types is 16, with only 1 fundamental.

Mapping constraints

There are five blocks of mapping constraints: general, self-map, function product, homogeneous binary function products, and func-
tion diagram cycle ones.

	MC = MGC ⊕ MSMC ⊕ MPC ⊕ HBFPC ⊕ FDCC is the set of mapping constraints, where: 
	MGC = MTC ⊕ MIC ⊕ MNPC ⊕ MSC ⊕ MBC ⊕ MDVC is the set of general mapping constraints, where: 

	MTC is the set of totality constraints, e.g., x : PEOPLE ↔ NAT(10) total, FirstName : PEOPLE ↔ ASCII(64) total, x : 
COUNTRIES ↔ NAT(3) total, Country-Name : COUNTRIES → ASCII(128) total, Country : CITIES → COUNTRIES total (in 
(E)MDM, f : D → C is total iff C ∩ NULLS = ∅).

	MIC is the set of single key (injectivity) constraints, e.g., x : PEOPLE ↔ NAT(10), x : COUNTRIES ↔ NAT(3), Capital : 
COUNTRIES ↔ CITIES, Representative : DISTRICTS ↔ PEOPLE.

	MNPC is the set of non-primeness constraints, e.g., Stock : STOCKS → [0, 100], Amount : UNPAID_ BILLS → (0, 100000], 
Area : COUNTRIES → NAT(8) (in (E)MDM, f : D → C is non-prime iff, semantically, it cannot be either one-to-one or a 
member of a minimally one-to-one function product).

	MSC is the set of surjectivity constraints, e.g., Edition : VOLUMES → EDITIONS, County : CITIES → COUNTIES.
	MBC is the set of bijectivity constraints, e.g., District : REPRESENTATIVES ↔ DISTRICTS.
	MDVC is the set of default value constraints, e.g., Stock : STOCKS → [0, 100] default = 0.

In total, there are 6 types of general mapping constraints, out of which only one-to-oneness (injectivity), non-primeness, ontoness 
(surjectivity), and default ones are fundamental: totality is a particular case of existence constraints (i.e., of type ∅  g, see the map-
ping product block) and bijectivity derives from injectivity and surjectivity.

https://pubmed.ncbi.nlm.nih.gov/27812521/
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	MPC = MMIC ⊕ MSKC ⊕ MEC ⊕ MNEC is the set of general mapping product constraints, where:
	MMIC is the set of concatenated key (minimal injectivity) constraints, e.g., StateName • Country : STATES ↔ ASCII(64) x 

COUNTRIES, Prerequisite • Course : PREREQUISITES ↔ COURSES x COURSES, City1 • City2 : DISTANCES ↔ CITIES x CITIES.
	MSKC is the set of subkey (variable geometry key) constraints, e.g., Folder • FName subkey of Folder • FName • FExt : FILES 

→ FILES x ASCII(255) x (ASCII(255) ∪ NULLS), whenever FExt(x) ∈ NULLS.
	MEC is the set of existence constraints, e.g., e-mail  Fname • Phone, Fname • Phone e-mail (in (E)MDM, just like in RDM, 

f  g is a shorthand for (∀x)(f(x) ∉ NULLS ⇒ g(x) ∉ NULLS); the only difference is that both f and g may be computed func-
tions, by composition or/and Cartesian function product).

	MNEC is the set of non-existence constraints , e.g., TributaryTo ¬ Lake • Sea • Ocean • LostInto, where TributaryTo : 
RIVERS → RIVERS, Lake : RIVERS → LAKES, Sea : RIVERS → SEAS, Ocean : RIVERS → OCEANS, and LostInto : RIVERS → GEO-
GRAPHIC_UNITS (in (E)MDM, f ¬ g is a shorthand for (∀x)(f(x) ∉ NULLS ⇒ g(x) ∈ NULLS )).

In total, there are 4 types of general mapping product constraints, all of them being fundamental.

	HBFPC = HBFPCC ⊕ HBFPRC ⊕ HBFPNRC ⊕ HBFPNIC ⊕ HBFPIRC ⊕ HBFPSC ⊕ HBFPNSC ⊕ HB-
FPASC ⊕ HBFPTC ⊕ HBFPNTC ⊕ HBFPITC ⊕ HBFPEC ⊕ HBFPNEC ⊕ HBFPIEC ⊕ HBFPQC ⊕ HBF-
PNQC ⊕ HBFPACC is the set of homogeneous binary function product (hbfp) constraints (i.e., of type f • g : D → C2; dyadic 
relations are particular cases of hbfps, for which C ∩ NULLS = ∅, f • g is minimally one-to-one, and f and g are called canonical 
projections), where: 
	HBFPCC is the set of hbfp connectivity constraints, e.g., : Host • Visitor : CHAMPIONSHIP_MATCHES → TEAMS x TEAMS.
	HBFPRC is the set of hbfp reflexivity constraints, e.g., Domain • Codomain : F → S x S, as, for any set S ∈ S, there is a cor-

responding system unity mapping 1S : S → S, 1S(x) = x, ∀x∈S.
	HBFPNRC is the set of hbfp null-reflexivity constraints; in (E)MDM, given any dyadic relation constraint type DRCT, the 

null-DRCT corresponding constraint type requires that DRTC be satisfied for any not null-values; e.g., f • g : D → (C ∪ 
NULLS)2 is null-reflexive iff (∀x∈C)(Im(f • g) ⊃ (x, x) ∨ Im(f • g) ⊃ (x, ) ∨ Im(f • g) ⊃ (, x) ∨ Im(f • g) ⊃ (, )).

	HBFPNIC is the set of hbfp null-identity constraints, e.g., BirthPlace • (City ° BirthClinic) : PEOPLE → CITIES x CITIES (iden-
tity ones are useless: why storing in a same db table two columns whose values must be equal on each line?).

	HBFPRC is the set of hbfp irreflexivity constraints, e.g., Host • Visitor : MATCHES → TEAMS x TEAMS.
	HBFPSC is the set of hbfp symmetry constraints, e.g., TakeOffAirport • LandingAirport : AIRPORT_CONNECTIONS →  AIR-

PORTS x AIRPORTS.
	HBFPNSC is the set of hbfp null-symmetry constraints (i.e., (∀x,y∈C)(Im(f • g) ⊃ (x, y) ⇒ Im(f • g) ⊃ (y, x) ∨ Im(f • g) ⊃ 

(y, ) ∨ Im(f • g) ⊃ (, x) ∨ Im(f • g) ⊃ (, )).
	HBFPASC is the set of hbfp asymmetry constraints, e.g., Host • Visitor : ELIMINATORY_MATCHES → TEAMS x TEAMS.
	HBFPTC is the set of hbfp transitivity constraints, e.g., TakeOffAirport • LandingAirport : AIRPORT_CONNECTIONS → AIR-

PORTS x AIRPORTS.
	HBFPNTC is the set of hbfp null-transitivity constraints (i.e., (∀x,y,z∈C)(Im(f • g) ⊃ {(x, y), (y, z)} ⇒ Im(f • g) ⊃ (x, z) ∨ 

Im(f • g) ⊃ (x, ) ∨ Im(f • g) ⊃ (, z) ∨ Im(f • g) ⊃ (, )).
	HBFPITC is the set of hbfp intransitivity constraints, e.g., Host • Visitor : ELIMINATORY_ MATCHES → TEAMS x TEAMS.
	HBFPEC is the set of hbfp Euclideanity constraints, e.g., Host • Visitor : CHAMPIONSHIP_ MATCHES → TEAMS x TEAMS (in 

(E)MDM, Euclideanity means both left and right Euclideanity).
	HBFPNEC is the set of hbfp null-Euclideanity constraints (i.e., (∀x,y,z∈C)(Im(f • g) ⊃ {(x, y), (y, z)} ⇒ Im(f • g) ⊃ (y, z) ∨ 

Im(f • g) ) ⊃ (y, ) ∨ Im(f • g) ⊃ (, z) ∨ Im(f • g) ⊃ (, )) ∧ (Im(f • g) ⊃ {(x, y), (z, y)} ⇒ Im(f • g) ⊃ (x, z) ∨ Im(f • g) ⊃ (x, ) ∨ 
Im(f • g) ⊃ (, z) ∨ Im(f • g) ⊃ (, )).

	HBFPIEC is the set of hbfp inEuclideanity constraints, e.g., Host • Visitor : ELIMINATORY_ MATCHES → TEAMS x TEAMS (in 
(E)MDM, inEuclideanity means neither left, nor right Euclideanity).

https://pubmed.ncbi.nlm.nih.gov/27812521/


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

The (Elementary) Mathematical Data Model Revisited 83

	HBFPQT is the set of hbfp equivalence constraints, e.g., TakeOffAirport • LandingAirport : AIRPORT_CONNECTIONS → AIR-
PORTS x AIRPORTS.

	HBFPNQC is the set of hbfp null-equivalence constraints (i.e., f • g is null-equivalent iff it is null-reflexive and null-Euclidean 
or reflexive and null-Euclidean or null-reflexive and Euclidean).

	HBFPACC is the set of hbfp acyclicity constraints, e.g., Host • Visitor : ELIMINATORY_MATCHES → TEAMS x TEAMS.

In total, there are 17 hbfp constraint types, out of which only connectivity, reflexivity, null-identity, irreflexivity, symmetry, asymmetry, 
transitivity, intransitivity, Euclideanity, inEuclideanity, and acyclicity are fundamental: equivalence is derived from reflexivity and Eu-
clideanity, and the other 5 null-type ones are trivially derived from their not-null counterparts. 

	MSMC = SMRC ⊕ SMNRC ⊕ SMIRC ⊕ SMSC ⊕ SMNSC ⊕ SMASC ⊕ SMIC ⊕ SMNISC ⊕ SMAIC ⊕ SMRSC 
⊕ SMNRSC ⊕ SMAC ⊕ SMQC ⊕ SMNQC is the set of self-map constraints, where: 
	SMRC is the set of self-map reflexivity constraints, e.g., Country ° State ° Capital total, reflex, State ° Capital total.
	SMNRC is the set of self-map null-reflexivity constraints, e.g., Country ° State ° Capital reflex, State ° Capital (i.e., Capital 

might take null values as well).
	SMIRC is the set of self-map irreflexivity constraints, e.g., Folder : FILES → FILES, ReportTo : EMPLOYEES → EMPLOYEES, 

Mother : PEOPLE → PEOPLE, Father : PEOPLE → PEOPLE.
	SMSC is the set of self-map symmetry constraints, e.g., Spouse : MARRIED_PEOPLE → MARRIED_PEOPLE total
	SMNSC is the set of self-map null-symmetry constraints, e.g., Spouse : PEOPLE → PEOPLE (i.e., Spouse might take null values 

as well).
	SMASC is the set of self-map asymmetry constraints, e.g., Folder : FILES → FILES, ReportTo : EMPLOYEES → EMPLOYEES, 

Mother : PEOPLE → PEOPLE, Father : PEOPLE → PEOPLE.
	SMIC is the set of self-map idempotency constraints, e.g., LocalRepres : CITIZENS → CITIZENS total.
	SMNIC is the set of self-map null-idempotency constraints, e.g., ReplacementPart : PART_TYPES → PART_TYPES (i.e., Re-

placementPart might take null values as well).
	SMAIC is the set of self-map anti-idempotency constraints, e.g., Folder : FILES → FILES, ReportTo : EMPLOYEES → EMPLOY-

EES, Mother : PEOPLE → PEOPLE.
	SMRSC is the set of representative system mapping constraints, e.g., Representative : USCITIZENS → REPRESENTATIVES, 

Representative = RepresentedBy ° District, where District is the canonical surjection District : USCITIZENS → DISTRICTS and 
RepresentedBy : DISTRICTS ↔ REPRESENTATIVES ⊆ USCITIZENS is the canonical identification mapping of the correspond-
ing representative system.

	SMNCSC is the set of null-representative system mapping constraints, e.g., ReportsTo : EMPLOYEES → EMPLOYEES (i.e., 
ReportsTo might take null values as well, as, generally, the roots of hierarchical organizations do not report to anybody).

	SMQC is the set of self-map equivalence constraints, e.g., State ° Capital total.
	SMNQC is the set of self-map null-equivalence constraints, e.g., State ° Capital (i.e., Capital might take null values as well).
	SMAC is the set of self-map acyclicity constraints, e.g., Folder : FILES → FILES, ReportTo : EMPLOYEES → EMPLOYEES, Moth-

er : PEOPLE → PEOPLE, Father : PEOPLE → PEOPLE.

In total, there are 14 types of self-map constraints, none of which being fundamental, as self-maps are particular cases of dyadic rela-
tions (where 1D and f : D → D are the canonical projections).

	FDCC = FDEC ⊕ FDNCC ⊕ FDACC ⊕ FDLCC ⊕ FDLNCC ⊕ FDLACC ⊕ FDGCC ⊕ FDLSC ⊕ FDLNSC ⊕ 
FDLASC ⊕ FDLIC ⊕ FDLNIC ⊕ FDLAIC ⊕ FDLQC ⊕ FDLNQC ⊕ FDLACC ⊕ FDLRSC ⊕ FDLCNRSC is the 
set of function diagram cycle constraints, where:
	FDEC is the set of function diagram commutativity (equality) constraints, e.g., PC ° LogicDrive = Host ° DBMS ° DB (“any file 

which is managed by a DBMS should belong to a logic drive of the PC hosting that DBMS”).
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	FDNCC is the set of function diagram null-commutativity constraints, e.g., RContinent = MContinent ° Range ° Subrange ° 
Group ° Mountain (“any river that springs from a mountain belongs to the same continent as that mountain”; both Mountain 
and Group might take null values as well).

	FDACC is the set of function diagram anti-commutativity (inequality) constraints, e.g., (∀x∈NEIGHBOR_COUNTRIES)(Fron-
tierColor(Country(x)) ≠ FrontierColor( Neighbor(x)).

	FDLCC is the set of function diagram local commutativity (reflexivity) constraints, e.g., ConstrRelation ° PrimaryKey = 1RELA-

TIONS (“the primary key of any relation is a constraint of that relation”).
	FDLNCC is the set of function diagram local null-commutativity constraints, e.g., Country ° State ° Capital = 1COUNTRIES (“the 

capital of a country must be a city of that country”; Capital might take null values as well)
	FDLACC is the set of function diagram local anti-commutativity (irreflexivity) constraints, e.g., Spouse ° Mother, Spouse ° 

Father, Mother ° Spouse, Father ° Spouse.
	FDLSC is the set of function diagram local symmetry constraints, e.g., Spouse ° 1PEOPLE total.
	FDLNSC is the set of function diagram local null-symmetry constraints, e.g., Spouse ° 1PEOPLE (i.e., Spouse might take null 

values as well).
	FDLASC is the set of function diagram local asymmetry constraints, e.g., Spouse ° Mother, Spouse ° Father, Mother ° Spouse, 

Father ° Spouse.
	FDLIC is the set of function diagram local idempotency constraints, e.g., Country ° State ° Capital total.
	FDLNIC is the set of function diagram local null-idempotency constraints, e.g., Country ° State ° Capital (i.e., Capital might 

take null values as well).
	FDLAIC is the set of function diagram local anti-idempotency constraints, e.g., Spouse ° Mother, Spouse ° Father, Mother ° 

Spouse, Father ° Spouse.
	FDLQC is the set of function diagram local equivalence constraints, e.g., State ° Capital total.
	FDLNQC is the set of function diagram local null-equivalence constraints, e.g., State ° Capital (i.e., Capital might take null 

values as well).
	FDLACC is the set of function diagram local acyclicity constraints, e.g., Spouse ° Mother, Spouse ° Father, Mother ° Spouse, 

Father ° Spouse.
	FDLRSC is the set of function diagram local representative system mapping constraints, e.g., currentMP ° EDistrict : UK_ 

VOTERS → UK_VOTERS, where currentMP : ELECTORAL_DISTRICTS → UK_VOTERS total and EDistrict : UK_VOTERS → ELEC-
TORAL_DISTRICTS total.

	FDLNRSC is the set of function diagram local null-representative system mapping constraints, e.g., RepresentedBy = cur-
rentMP ° EDistrict : UK_ VOTERS → UK_VOTERS, where currentMP : ELECTORAL_DISTRICTS → UK_VOTERS and EDistrict : 
UK_VOTERS → ELECTORAL_ DISTRICTS (i.e., both currentMP and EDistrict might take null values as well).

	FDGCC is the set of function diagram general commutativity constraints, e.g., let us consider the function diagram from 
Figure 1 and its associated general commutativity constraint retPurCnstr: (∀x∈PUR_DETAILS)( ∀y∈RET_DETAILS) (Pur-
chase(x) = Purchase(Return( y)) ∧ Product(x) = Product(y) ⇒ Rqty(y) ≤ Pqty(x)) (“You cannot return more products than you 
have purchased”).
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Figure 1: An example of a function diagram cycle having an associated constraint.

     In total, there are 18 types of function diagram cycle constraints, out of which only the commutativity, general commutativity, and 
anti-commutativity are fundamental: the local-type ones are particular cases of self-maps, namely computed self-maps through func-
tion composition.

     The grand total for the mapping constraint set is 59 types, with 22 ones fundamental.

Object constraints

In (E)MDM, any other explicit constraint (i.e., which is not of any of the above 75 types) is called an object constraint and is formalized 
by a closed Horn clause. This type is fundamental: in fact, any other constraint type is ultimately formalized by a closed Horn clause.

	OC is the set of object constraints, e.g., let us consider the function diagram from Figure 2 (where Im(Type) = {“cash”, “card”, 
“wire”}), functions, and associated object (PD1) and non-existence (PD2 and PD3) constraints:
PD1: (∀x∈PAYM_DOCS)(PDType(Type(x)) = “cash” ⇒ To(x) ∈ NULLS ∧ From(x) ∈ NULLS ∧ Card(x) ∈ NULLS) (“Whenever Type is 
“cash”, To, From, and Card must be null”).
PD2: To • Card ¬ From (“If Type is “card”, From must be null, whereas To and Card must not be null”).
PD3: To • From ¬ Card (“If Type is “wire”, Card must be null and To and From must not be null”).

Figure 2: An example of a function diagram having an associated object constraint.

     In total, (E)MDM provides 76 types of explicit constraints, out of which 24 are fundamental.

     The 6 types of relational constraints provided by RDBMSes (range ((co)domain), not null, keys, referential integrity (foreign keys), 
tuple (check), and default value) should be enforced through their engines. All other constraint types (i.e. non-relational) should be 
enforced by the software applications managing the corresponding dbs, through their event-driven methods and embedded SQL.
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System constraints

Apart from the explicit ones, any db scheme also includes implicit system constraints (all being transparent to users). Their types and 
numbers vary in function of the DBMS versions implementing them. The following are among the most common ones: 

	SysC is the set of system constraints, e.g.,
• ∅ ⊆ S, ∀S∈S.
• card(∅) = 0; card(S) ≥ 0, ∀S∈S.
• ∅ ∪ S = S, ∅ ⊕ S = S, ∀S∈S.
• ∅ ∩ S = ∅, S ∩ S = S, S ∪ S = S, ∀S∈S.
• T = S ⇔ T ⊆ S ∧ S ⊆ T, ∀S,T∈S.
• U = S ⊕ T ⇔ S ∩ T = ∅ ∧ S ∪ T = U, ∀S,T,U∈S.
• NAT(n) ⊆ INT(n) ⊆ CURRENCY(n) ⊆ RAT(n + m, m), for any naturals n and m > 1.
• NAT(n) ⊂ NAT(m) , INT(n) ⊂ INT(m) , …, ASCII(n) ⊂ ASCII(m), for any naturals n < m.
• ∀R∈ R, R = (f1 → C, …, fn → C), f1 total ∧ … ∧ fn total ∧ f1 • … • fn injective.

An (E)MDM scheme example

     Figure 3 presents, as an example, the (E)MDM scheme for a simple subuniverse of interest: people and marriages (in legislations in 
which polygamy is not allowed).

Discussion

For example, you can test a week for free all following popular tree family software products and, if you use your imagination, you will 
be amazed by how poor is their concern for your data quality. To exemplify with only a few commonsense tests, please note that, with 
the products Legacy Family Tree (LFT) [11], RootsMagic (RM) [12], GenoPro (GP) [13], Gramps (G) [14], Family Historian (FH) [15], 
Family Tree Heritage (FTH) [16], and Ancestral Quest (AQ) [17] you can store in your db values according to which any person was:

	born after his/her death (LFT, RM, GP, G, FH, FTH, AQ).
	baptized before birth (LFT, RM, G, FTH, AQ).
	buried before death (RM, G, FTH, AQ).
	having a male as mother (FH).
	born before his/her parents’ birth or hundreds of years after their death (GP, G, FH, FTH, AQ).
	having a same person as both his/her mother and father (G).
	married with a person of same sex and had together a child dead before their birth (G).

     It is true that, for some values of such totally unplausible data, FH, FTH, and AQ (a clone of FTH) at least display a warning reading 
that they might be wrong, but if you ignore it you may save them in the db.

     Obviously, thanks to its constraints, the (E)MDM scheme presented in Figure 3 (correspondingly extended with baptism and burial 
dates, as well as corresponding constraints) would reject storing any such unplausible data. 

Related work

     Besides its system constraints, (E)MDM also includes dozens of meta-constraints for guaranteeing minimality of constraint sets and 
assisting its users in also guaranteeing their coherence [8]. For example, as acyclicity implies asymmetry, which implies irreflexivity, 
both asymmetry and irreflexivity are redundant for acyclic graphs (be them dyadic relations or self-maps or homogeneous binary 
function products), while acyclicity and reflexivity or/and symmetry are incoherent.
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Figure 3: An example of an (E)MDM scheme.

Figure 3: (Continued).
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Figure 3: (Continued).

     We discussed the extraordinary importance of db constraints for guaranteeing data quality in [18, 19].

     We used the (E)MDM to model the RDM [6] and the first order predicate logic with equality [20].

     MatBase is our intelligent data and knowledge management system prototype, based on both (E)MDM, E-RDM, and RDM [21-23].

     We published several algorithms for detecting some of the (E)MDM constraint types [24-27], as well as for enforcing them in Mat-
Base [26-32]. Papers [33, 34] deal with the implementation and usage, respectively, of the MatBase’s Datalog¬ subsystem.

     We proved that the expressive powers of E-RDM [10, 35, 36] and the Functional Data Model (FDM) [37] (which was the data model 
that inspired (E)MDM) are equivalent [38].

     Apart from the FDM, other data modeling approaches are related to (E)MDM: categorical [39], graph [40-43], incomplete dbs [44], 
probabilistic [45], possibilistic [46], and constraint dbs [47].

     Finally, the most closely related approaches to non-relational constraint enforcement are based on business rules management 
(BRM) [48, 49] and their corresponding implemented systems (BRMS) and process managers (BPM), like the IBM Operational Deci-
sion Manager [50], IBM Business Process Manager [51], Red Hat Decision Manager [52], Agiloft Custom Workflow/BPM [53], etc. They 
are generally based on XML (but also on the Z notation, Business Process Execution Language, Business Process Modeling Notation, 
Decision Model and Notation, or the Semantics of Business Vocabulary and Business Rules), which is the only other field of endeavor 
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trying to systematically deal with business rules, even if informally, not at the db design level but at the software application one, and 
without providing automatic code generation. 

     From this perspective, (E)MDM is also a BRM but a formal one, and MatBase is also a BRMS but an automatically code generating one.

     Data quality may be further improved only semantically, for example by checking values against public and/or private trusted dbs, 
like Geographic Data [54], Top Companies Database [55], Yellow Pages Scraper [56], Amazon Product Database [57]. 

Conclusion

     We revisited (E)MDM, including all its 76 current constraint types, which are its main strength in guaranteeing db data plausibility, 
the highest possible level of syntactical data quality.

     We provided lot of real-life examples for all (E)MDM set, mapping, and constraint types.

     We also provided clues on implementing (E)MDM schemata in RDBMSes and software applications managing their dbs.

     We presented an (E)MDM scheme for a family subuniverse and compared it with some popular family tree software products, prov-
ing that it would reject any of the absurd unplausible data value that they accept for storing in their dbs.

    We provided a comprehensive batch of related work, illustrated with a rich corresponding reference list, even if it contains only a 
few seminal items for any other related data modeling approach or DBMS.
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