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Abstract

     The method of calculation of phase diagrams (CALPHAD) is a calculation method that search-
es for a state of providing minimal Gibbs energy as an equilibrium state. To perform a thermody-
namic equilibrium calculation for a single material composition and to predict a phase diagram, 
we can complete the CALPHAD method calculation within a realistic time. However, screen-
ing many material compositions associated with predicting the corresponding phase diagrams 
takes much time. For alloy materials, for example, it would take 161 hours to calculate phase dia-
grams of all alloy compositions to screen 10,000 sets of explanatory variables, i.e., compositions 
and manufacturing conditions, since it takes 58 seconds to calculate each set. The present study 
aims to provide a calculation device, method, and program for quickly predicting the thermody-
namic equilibrium state. We developed a deep learning model based on the Transformer archi-
tecture to achieve this objective, primarily used for various natural language processing tasks, 
such as machine translation, text summarization, question answering, and sentiment analysis. 
The encoder part of our developed model extracts the necessary features for phase diagram 
prediction from the inputted alloying elements. In contrast, the decoder part predicts a phase 
diagram for each temperature based on the results from the encoder. We calculated 800,000 
species using the CALPHAD method and employed these data to train our developed model. Our 
trained model can calculate thermodynamic equilibrium states more than 100 times faster than 
the CALPHAD method and correctly reproduce the phase diagrams of ground truths. Based on 
the present result, we could invent a calculation device, a calculation method, and a calculation 
program for predicting the thermodynamic equilibrium state in a short time.
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Introduction

    Prediction of mechanical properties of aluminum alloys is essential to apply the aluminum alloy materials to various purposes. For 
example, some automobile parts need high-strength aluminum alloy materials at high temperatures. The process determines the 
structure, and the structure determines the property [Fig1]. In this research, we focus on predicting the thermodynamic equilibrium 
structure from the process because the thermodynamic equilibrium structure provides an idea of the properties of aluminum alloy 
so well.

    Process condition consists of additive elements, amount of Si, Fe, other elements, heat treatment, working temperature, time, etc. 
Structure information includes chemical compounds, types, phase fractions, grain size, and shape. The properties have mechanical 
properties, ultimate tensile strength, tensile yield stress, elongation, etc. If we focus on the multiple-step prediction, we need to calcu-
late thermodynamic equilibrium structures for various numbers of candidates and then forecast the corresponding properties. We can 
use the calculation-of-phase-diagrams (CALPHAD) method [1] to calculate thermodynamic equilibrium structures, but the CALPHAD 
method is time consuming when calculating for various numbers of candidates.

    To accelerate the thermodynamic equilibrium calculation speed, we have tried to use the deep learning method by regarding the 
CALPHAD calculation results as train data. In particular, we have attempted to use transformer architecture, a deep learning method. 
Transformer [2] is a neural network architecture demonstrating high accuracy in Natural Language Processing. The Transformer 
consists of an encoder and a decoder. The Encoder calculates self-attention, representing the correlation strength among subjects 
such as words. The Decoder predicts the collection of the subjects based on the masked target-target self-attention, the source-target 
attention, and the output obtained from the Encoder. Transformer is a basic architecture of a large language model, e.g., ChatGPT, but 
we can apply it to other purposes.

Figure 1: Relationship between process, structure and property.

Transformer Architecture

    The Transformer is a deep learning model for various tasks, including natural language processing, image recognition, and time 
series prediction. The phase fractions of aluminum alloys vary with temperature, but predicting phase fractions from low to high 
temperatures is similar to forecasting a time series problem. Thus, we utilized the architecture of the Transformer used for forecasting 
a time series problem to predict phase fractions from the alloy compositions of aluminum alloys. The only modification made to the 
standard Transformer model is processing the Input Embedding for the Encoder and Decoder.
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     As shown in Table 1, the alloy composition consists of 13 values. We directly fed this 13-value set into the Input Embedding of the 
Encoder. In the Encoder’s Input Embedding, we used a fully connected layer combined with an activation function to transform each 
of the 13 alloy composition values into a 1536-dimensional embedding vector. The parameters of this fully connected layer are subject 
to optimization during training. We design the Decoder to output phase fractions; thus, it generates 11-dimensional vectors for each of 
70 temperature points, ranging from 100°C to 790°C in 10°C increments. Each value in the 11-dimensional vector represents the phase 
fraction of one of the 11 predefined phases used in the phase fraction calculations, and the sum of phase fractions at each temperature 
point is constrained to be 1. In the Transformer architecture, it is necessary to maintain a consistent dimensionality for the embedding 
vectors between the Encoder and Decoder to perform Attention calculations. Therefore, in the Decoder’s Input Embedding, we em-
ployed a combination of a fully connected layer and an activation function to transform the 11-dimensional vector into a 1536dimen-
sional embedding vector. The parameters of this fully connected layer are subject to learning, similar to those in the Encoder.

    The Transformer architecture involves multiple hyperparameters. In the model used for this study, the hyperparameters are as fol-
lows: number of Heads in Multi-Head Attention: 24, number of Encoder Stacks: 2, and number of Decoder Stacks: 3.

Training Data

     Thermo-Calc was used to calculate the phase fractions of 6000 series aluminum alloys based on the CALPHAD method. When calcu-
lating phase fractions, we defined 11 phases consisting of Liquid(Al), Al, Al9Fe2Si2, Al8Fe2Si2, Al15(Mn, Fe)3Si2, Mg2(Si, Sn), (Al, Si)3Ti(Lt), 
(Al, Si)11Cr4, DO23-Al3(Ti, Zr), Liquid(Solder), and Pb. Based on these phases, we generated 841,689 training data points. In the Japanese 
Industrial Standards (JIS), which set the typical alloy standards in Japan, specific 6000 series of aluminum alloys include the 6010, 
6013, 6060, 6061, 6063, 6066, 6070, 6101, 6181, and 6351 series. For each of these series, we specified the upper and lower limits 
for the values of the alloying elements, as shown in Table 1. The alloying elements include 12 types: Si, Fe, Cu, Mn, Mg, Cr, Zn, Ti, Zr, B, 
Bi, and Pb. We randomly selected alloys that meet the standard specifications to generate the training data. For each selected alloy, we 
randomly determined the composition of each alloying element within the specified upper and lower limits. We can determine the 
composition of Al to make the sum of all alloying elements become 1. Using this set of 13 values to define the alloy composition, we 
calculated the phase fractions using Thermo-Calc. Using this established set of 13 values to determine the alloy composition, we cal-
culated the phase fractions using Thermo-Calc. For 70 temperature points ranging from 100°C to 790°C in 10°C increments, we used 
the phase fraction values from the 11 pre-defined phases as the training data. The reason for obtaining values at 10 ℃ intervals is to 
optimize memory usage and reduce computation time during inference with the trained model.

     We prepared 811,023 training data samples and 30,666 validation data samples.

Element Si Fe Cu Mn Mg Cr Zn Ti Zr B Bi Pb Al
Min 0.60 0.00 0.60 0.20 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Bal.
Max 1.00 0.50 1.10 0.80 1.20 0.15 0.25 0.10 0.05 0.05 0.05 0.05 Bal.

Table 1: Upper and Lower Composition Limits of JIS Standard 6013 Series Aluminum Alloy.
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Figure 2: Example of Phase Fraction Calculation.

     Note that when visualizing the phase fractions, as shown in Fig. 3, we display values at 1 °C intervals, which have been interpolated 
linearly.

Model Training

     When treating the prediction of phase fractions in aluminum alloys as a time series forecasting problem, we should note the follow-
ing points:

a) In aluminum alloys, 11 phase fractions are defined for each temperature. Therefore, it is necessary to simultaneously forecast 11 
data points as a time series rather than just one.

b) The range required for phase fraction prediction spans a broad order of magnitude, ranging from 10-3 to 1.
c) As a target for time series forecasting, it is crucial to consider that the shape of phase fractions can exhibit discontinuous changes, 

disappearances, and generation.

    In the context of time series prediction problems, it is common to use loss functions such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), and Mean Squared Log Error (MSLE) for model training. However, for the above reasons, using such simple loss 
functions did not yield satisfactory results for phase fraction prediction. Therefore, we found that a combination of multiple loss func-
tions is effective. We will explain Further details in Section 5.

Results and Discussion

    In this chapter, we begin by examining the efficacy of various loss functions in training for phase fraction predictions. We then ex-
plore the applicability of architectures other than the Transformer to these predictions. Lastly, we verify the time required for model 
inference.

Loss Functions

     When using MAE as the loss function as shown in Equation (1), we should calculate the error as the absolute difference between the 
actual and predicted values.

https://primerascientific.com/psen
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     In the equations mentioned above, the subscripts i in yi,t represents the 11 phase fractions to be predicted, and the subscript t 
represents the temperature of 70 points for each phase fraction. When learning multiple phase fractions with different scales simul-
taneously, such as in the prediction of aluminum alloy phase fractions, there is a risk that learning may not proceed accurately for 
the following reasons. The phase fraction values of solid and liquid aluminum phases are close to 1, which is significant, while the 
phase fraction values of other phases are small, around 10-3. Therefore, the error derived from the solid and liquid aluminum phases 
becomes dominant, and there is a risk that the learning may not proceed as the error for phases with small phase fraction values is 
underestimated. MSE calculates the error as the square of the difference between the true and predicted values, making MAE’s short-
comings more pronounced.

     On the other hand, when using MSLE as the loss function as shown in Equation (2), the error is calculated as the square of the dif-
ference between the logarithmic values of the actual and predicted values.

     Therefore, it is suitable when the possible scale of the variables to be learned is broad, and it is beneficial for learning data like the 
phase fractions of aluminum alloys, where the potential scale of phase fractions is wide.

Figure 3: The predictive outcomes of models trained with MAE and MSLE Loss.
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      Fig. 3 shows examples of the results learned with only MAE and MSLE as the loss functions. As the loss function, the figure indicates 
that neither MAE nor MSLE has accurately predicted the phase fractions. The model trained with MAE as the loss function produced 
predictions where the phase fraction morphology was overall inappropriate. The model trained with MSLE did not replicate the dis-
continuous changes in the phase fraction, and the phase fraction of the orange Al did not become zero around 700°C.

     The vertical axis represents the phase fraction, while the horizontal axis represents temperature.

     Therefore, in addition to MAE and MSLE, we added the following to the loss function during learning.

(a) Errors related to Cross-entropy: By definition, each phase fraction value of all phases is 0 or more, and the sum of them should 
be 1.0. Therefore, it is possible to interpret the problem of predicting multiple-phase fractions as a problem of predicting a prob-
ability distribution. In this case, it is possible to employ the cross-entropy function used in multi-class classification learning as 
the error function. Equation (3) shows the cross-entropy function.

(b) Errors related to temperature dependence: The physical and mechanical properties of alloys are significantly influenced by the 
types and distributions of phases present within them. Consequently, in alloy manufacturing, it is essential to accurately predict 
the temperature-dependent phase stability. At specific temperatures, particularly those related to the formation and disappear-
ance of phases that delineate the phase existence range, it is preferable to predict the phase fraction with higher precision than at 
other temperatures. Therefore, we calculated the error between the actual values and the model-predicted values using MSLE at 
specific temperatures 𝑇∗ where the phase fraction value becomes zero. In the loss function denoted as Loss MSLE in equation (2), 
the subscript t uniformly calculates the loss across the entire temperature range from 100°C to 700°C. In contrast, the tempera-
ture-dependent loss function Loss Temp in equation (4) computes the error specifically at the particular temperature 𝑇∗ where 
the phase fraction is zero, rather than across the entire temperature range.

 

In equation (4), the temperature subscript 𝑇∗ refers to the specific temperatures where the phase fraction value becomes zero, 
and K represents the total number of such temperatures considered.

(c) Error related to the difference: The phase fraction graph tends to have discontinuous changes and rapid increases and decreas-
es. To accurately predict such changes in the phase fraction, it is considered adequate to use the difference in phase fractions as 
an error. Therefore, one can calculate the increase or decrease from the adjacent temperature as a difference for the actual values 
of the phase fractions at each temperature. We can use the same method to calculate the model’s prediction results difference. By 
using MSLE as the error function for these two differences, one can calculate the error related to the difference.

     In equation (5), y’ represents the difference with the adjacent temperature. Here, when phase fractions are given for 70 discrete 
temperatures, the difference in phase fractions for adjacent temperatures can be obtained at 69 points, which is 70-1.

      The loss function for phase fraction, LPhase was defined as in equation (6) by combining equations (1) through (5).

𝐿𝑃ℎ𝑎𝑠𝑒 = 𝐶1 ∗ 𝐿𝑀𝐴𝐸 + 𝐶2 ∗ 𝐿𝑀𝑆𝐿𝐸 + 𝐶3 ∗ 𝐿𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 + 𝐶4 ∗ 𝐿𝑇𝑒𝑚𝑝 + 𝐶5 ∗ 𝐿𝐷𝑖𝑓𝑓       (6)
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     Here, the subscripts 𝐶1 through 𝐶5 are coefficients for adjusting the scale of each loss.

    Fig. 4 shows examples of the results learned with Phase Loss as the loss functions. The model trained with Phase Loss as the loss 
function was found to be very close to the results calculated by the CALPHAD method. Table 2 lists the results calculated for each loss 
function on the validation data for each model. It can be observed that the model trained with Phase Loss produces the best results in 
all cases.

Figure 4: The predictive outcome of model trained with Phase Loss.

     The vertical axis represents the phase fraction, while the horizontal axis represents temperature.

MAE Loss Model MSLE Loss Model Phase Loss Model
MAE Loss 6.17 ∗ 10−4 5.96 ∗ 10−4 1.73 ∗ 10−4
MSLE Loss 3.64 ∗ 10−5 3.14 ∗ 10−5 1.88 ∗ 10−5
Diff Loss 1.61 ∗ 10−7 1.57 ∗ 10−7 7.30 ∗ 10−8
Entropy Loss 16.0 14.6 14.5
Temp Loss 8.24 ∗ 10−5 4.66 ∗ 10−5 1.58 ∗ 10−5

Table 2: Comparison of Losses Among Models on Validation Data.

Architecture other than Transformer

    As noted in the previous section, Phase Loss is highly effective in learning phase fractions. Although the Transformer is a effective 
model, when the sequence length is denoted as L, its computational complexity is known to increase at 𝑂(𝐿2). This results in longer 
computational times and increased memory requirements when processing extensive data sequences. In this context, we evaluated 
the accuracy of architectures lighter than the Transformer when trained with Phase Loss. Specifically, we assessed the Seq2Seq [3] 
model and a network composed solely of fully connected layers.

    Table 3 lists the results calculated for each loss function on the validation data for each architecture. It can be observed that the 
Transformer architecture with Phase Loss produces the best results in all cases. The models of Full Connected and Seq2Seq generally 
exhibit high loss values. Therefore, even when trained with Phase Loss, applying them for phase fraction predictions is challenging.

https://primerascientific.com/psen
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Full Connected Seq2Seq Transformer
MAE Loss 4.73 ∗ 10−3 1.89 ∗ 10−3 1.73 ∗ 10−4
MSLE Loss 3.80 ∗ 10−4 3.64 ∗ 10−4 1.88 ∗ 10−5
Diff Loss 5.81 ∗ 10−7 1.33 ∗ 10−6 7.30 ∗ 10−8
Entropy Loss 18.8 16.3 14.5
Temp Loss 1.82 ∗ 10−4 6.48 ∗ 10−4 1.58 ∗ 10−5

Table 3: Comparison of Losses Among Architecture on Validation Data.

Time required for model inference

     For models trained with Phase Loss, we measured the time required for predictions on both GPU and CPU. We then compared these 
results with those of CALPHAD. The findings are documented in Table 4. We confirmed that when using a GPU, the Transformer model 
can calculate phase fractions more than 100 times faster than ThermoCalc.

Model Calculation Time using GPU Calculation Time using CPU
CALPHAD 51 51
Transformer 0.49 4.0

Table 4: Comparison of Calculation Time (seconds).

Conclusion

    Firstly, transformer architecture was applied to reproduce the phase fractions calculated by the CALPHAD method. Secondly, the 
deep learning method based on Transformer architecture reproduces the phase fractions calculated by the CALPHAD method. Finally, 
our trained model can calculate thermodynamic equilibrium states more than 100 times faster than the CALPHAD method.
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