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Abstract

     Predicting pregnancy and live births using machine learning in the field of in-vitro fertil-
ization (IVF) has long posed a significant challenge due to the difficulty in achieving consis-
tent performance across various studies. In this paper, we conduct a comprehensive review 
and analysis of the existing limitations in current research. Additionally, we introduce a stan-
dardized machine learning pipeline, which serves as a valuable guide for future researchers. 
Furthermore, we propose two alternative modeling approaches: phase-by-phase modeling and 
subgroup FMLR modeling. These two alternatives not only enhance prediction performance but 
also offer clinically sensible explanations and timely guidance for users. Most notably, they shed 
light on the complexities of the IVF cycle, highlighting when, who, and where machine learning 
tasks face their greatest challenges. This insight can inspire future efforts in data collection and 
patient engagement processes.
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Introduction

    In recent years, medical practitioners have shown increased interest in utilizing machine learning 
models for predicting pregnancy and live births, particularly in identifying the significant factors af-
fecting the outcome of in vitro fertilization (IVF) [10]. While previous research provides a compre-
hensive overview of applying machine learning techniques in the context of IVF, little attention has 
been given to analyzing the reproducibility and shortcomings of these studies. Although many mod-
els have undergone testing and some have reported decent performance in testing, their real-world 
adoption for prognosis and diagnosis remains limited due to a lack of external validation [8]. These 
models often fail when applied to real-life populations, and a domain shift can substantially compro-
mise their generalizability and reproducibility. Therefore, there is a pressing need for further evalua-
tion and analysis to standardize the machine learning workflow in future research [11].

https://primerascientific.com/psen
https://primerascientific.com/psen
https://primerascientific.com/


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Rethinking Challenges of Machine Learning in Assisted Reproductive Technology 16

    Previous work on IVF pregnancy and live birth prediction using machine learning models has yielded inconsistent results, with 
AUC values ranging from 0.6 to over 0.95. In this study, we examined the most standard techniques used in previous work, including 
logistic regression, decision trees, XGBoost, and SVM [6], using our private dataset. However, our evaluation also revealed inconsistent 
AUC results. As a result, we embarked on a deeper examination of why IVF prediction is such a challenging task and propose two novel 
approaches, 1) stage-by-stage modeling and 2) FMLR subgroup modeling, to enhance model performance and real-life generalizability.

    The IVF treatment process is a sequential and time-consuming one with numerous sub-cycles. Throughout this process, many 
patient and treatment factors undergo changes that can impact the evaluation of potential pregnancy and live births. Two primary 
issues arise when applying machine learning models to the IVF treatment process. First, there is a time discrepancy between feature 
collection and model usage. Some models require a large number of features, but many of these features may not be available until 
various medical tests are conducted, whereas the models are intended for real-time use. In other words, we may not collect enough 
features when we apply the models. The second issue is data leakage, which occurs when using features that result from the clinician’s 
prediction of the treatment outcome. This data leakage issue is prevalent in both machine learning and IVF literature. Therefore, the 
practical benefit of having a machine learning prediction of pregnancy or live birth only a few days before the real-life outcome is ques-
tionable. Models that generate predictions of live births or pregnancies solely based on preliminary results and patient demographics 
may be too arbitrary and deterministic for the dynamic nature of the treatment progress, potentially giving patients false hope or early 
discouragement. What clinicians truly need is likely a stage-by-stage approach to better outline the treatment progress, while patients 
may benefit more from machine learning models that provide shorter-term insights.

     IVF data also exhibits significant heterogeneity due to the intricate interplay of various biological, environmental, and procedural 
factors, leading to the presence of numerous latent subgroups within the data. Traditional machine learning approaches, while ef-
fective in capturing general patterns, often struggle to account for the nuanced and individualized nature of IVF outcomes. A more 
tailored approach is the use of mixture regression models, which inherently recognize and adapt to the heterogeneity within the data. 
We propose a subgroup modeling workflow, that function by identifying latent subgroups and applying distinct regression models to 
each, thereby capturing the unique characteristics and relationships within each subgroup. This approach not only enhances predic-
tive accuracy but also provides deeper insights into the complex dynamics of IVF treatments. 

We structure our paper into three main parts:

     1.  A comprehensive review of past ML+IVF literature and analysis of the flaws. 
     2.  Experiments of a standard ML pipeline on our dataset and why it fails. 
     3.  Two novel alternatives: the Subgroup modeling approach and the Phase-by-phase modeling approach.

Materials and Methods 
Materials I. Literature Analysis: Pitfalls of Applied Machine Learning in IVF

    In our preliminary investigation, we conducted an extensive literature review spanning from 1997 to 2021. This review aimed to as-
sess the performance of various machine learning models in IVF prediction papers and understand the differences in their approaches, 
datasets, and their resulting performance variations, as indicated by AUC (Area under the ROC Curve) values. Notably, the AUCs re-
ported in the reviewed literature exhibited a broad spectrum, ranging from 0.6 to 0.95. We identified that these discrepancies in AUC 
values are primarily attributed to the variability in the availability of crucial features and the changing demographics of IVF patients, 
rather than divergent modeling techniques.

    Several factors contribute to the inherent challenge of accurately predicting pregnancy or live birth in IVF procedures. Firstly, the 
inability to replicate findings from previous studies arises due to differences in data sources, volumes, and study sizes. These studies 
did not consistently employ a left-out test set for evaluation.

https://primerascientific.com/psen
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     Secondly, upon reviewing variables used in previous studies, we identified that important features such as the BMI of males, age of 
the male partner, alcohol and smoking habits of both parents, are not always present across datasets. Inclusion of these variables may 
enhance prediction accuracy.

    Thirdly, the demographics of patients undergoing IVF treatments have evolved over the decades. For instance, during the 1990s, 
Caucasians accounted for the majority of patients, constituting 91.5% of the patient population from 1994 to 1998. African Americans, 
Asians, and Hispanics represented 4%, 3%, and 1.5% of the population, respectively. IVF treatments have since become accessible to 
a more diverse demographic group. Although our dataset lacks race and ethnicity information, it is reasonable to assume that today’s 
patients receiving treatments differ significantly from those included in data collected in the 1990s.

     Our examination also revealed common flaws in existing ML+IVF literature. These shortcomings can be categorized into two main 
groups: the exclusion of subpopulations and data leakage.

     The exclusion of specific subpopulations emerged as a recurring issue in current research. For example, in [5], IVF/ICSI cycles were 
excluded in cases involving oocyte or embryo donation, surgically retrieved spermatozoa, patients positive for human immunodefi-
ciency virus, modified natural IVF, and cycles canceled due to poor ovarian stimulation, ovarian hyperstimulation syndrome, or other 
unforeseen medical or non-medical reasons. Similarly [4], excluded cases involving embryos related to donor/surrogate mothers and 
cycles using frozen embryos, which constitute a significant portion of common IVF data points. These exclusions artificially increase 
the variance in patient populations and impair the model’s generalization capabilities.

     Another common mistake in modeling IVF data is the use of information that would not be available to the model at the time it 
needs to make predictions. Machine learning models used in clinical settings often operate in real time, and they lack access to every 
feature available in the dataset at the moment of prediction. Tests and demographic features exist in the IVF dataset but may not yield 
results until pregnancy or shortly before pregnancy, such as B-HCG. Another form of this error, known as data leakage, involves using 
features whose values are obtained as a result of the clinician’s prediction of the patient’s outcome. This use of data-leaking features 
divulges information about the true label the model aims to predict, even though, in practice, the model should assist the clinician in 
making their prediction initially, without having access to these data-leaking features. For instance, in one paper with exceptionally 
high performance [10], authors used B-HCG as a predictor. When we incorporated B-HCG as a predictor in our model, we achieved an 
AUROC as high as over 95 percent. However, HCG is a hormone produced in the body during pregnancy, rendering such predictions 
meaningless. These two identified flaws inspired us to devise two alternatives to the traditional ML workflow: phase-by-phase model-
ing and subgroup modeling, which will be explored in subsequent sections.

A summary of the literature review could be found below: 

# Data Year 
and Size

Model &  
Performance

Important 
Features

Used Features Outcome  
Variable

External 
Validation

Limitations

[1] 1991-1994, 
36961

Logistic 
Regression

Age Age, Treatment Livebirth 
Success

N Cycles that in-
volved gamete or 
embryo donation, 
frozen embryo 
transfer, or micro-
manipulation and 
unstimulated cy-
cles were excluded.
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[2] Year range 
unknown, 
554

Logistic Re-
gression (no 
interaction 
terms)

Maternal age 
(negative), 
Number 
and quality 
of embryos 
(positive)

Maternal age, Cause for 
intervention, Donor insemina-
tion, Rank of attempt, Serum 
LH and E2 levels on day of 
hCG administration, Embryo 
transfer catheter (flexible vs 
rigid), Number of embryos 
transferred of each morpho-
logic type and developmental 
stage, Sperm parameters 
(concentration, percentage 
motility and rate of progres-
sion) before and after Percoll 
processing, Sperm concentra-
tion at insemination, Number 
and quality of retrieved 
oocytes, Human factor

pregnancies, 
live births, 
and multiple 
birth deliv-
eries vs. IVF 
failure

N Small Sample Size

[3] 1993-1998, 
642 women 
undergoing 
their first 
IVF treat-
ment cycle 
in which no 
more than 
two em-
bryos were 
transferred.

Multivari-
ate logistic 
regression 
(AUC 0.68)

Development 
stage, Mor-
phology score 
of the 2 best 
embryos, Age

Woman’s age (per y), Du-
ration of infertility (per y), 
Secondary type of infertility. 
Indication for IVF: Tubal, Male 
factor, Idiopathic infertility, 
Others, Total no. of sperm 
cells (per 107/mL), Progres-
sive motile sperm cells (per 
%), Estrogen level (per 103 
pmol/L), No. of preovulatory 
follicles (per follicle), No. 
of retrieved oocytes (per 
oocyte), Proportion of oocytes 
fertilized (per 10%). Day of 
ET: Day 3, Day 4, Day 5, No. of 
embryos suitable for transfer 
(per embryo). Stage devel-
opment of the best embryo: 
Retarded, Appropriate, 
Advanced. Stage development 
of the second best embryo: 
Retarded, Appropriate, Ad-
vanced, Morphology score of 
the best embryo (range 1–4), 
Morphology score of the sec-
ond best embryo (range 1–4)

singleton 
and twin 
pregnancy

N No external  
validation

[4] 2003- 
2007, 
144018

Logistic Re-
gression (AUC 
0.6335)

previous IVF 
live birth

preterm 
birth, low 
birth weight, 
and macro-
somia

N Excluded 
donor/surrogate 
mother, frozen 
embryos
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[5] 2001- 2009, 
2621

Logistic 
Regression 
(AUC 0.68)

Female age, duration of 
subfertility, previous ongoing 
pregnancy, male subfertility, 
diminished ovarian reserve, 
endometriosis, basal FSH, 
number of failed IVF cycles

ongoing 
pregnancy

N IVF/ICSI cycles 
were excluded in 
the case of oocyte 
or embryo dona-
tion, surgically 
retrieved sper-
matozoa, patients 
positive for human 
immunodeficiency 
virus, modified nat-
ural IVF and cycles 
cancelled owing to 
poor ovarian stim-
ulation, ovarian 
hyperstimulation 
syndrome or other 
unexpected medi-
cal or non-medical 
reasons.

[6] 2014- 2018, 
7188

Logistic 
regression, 
Random for-
est, XGBoost, 
SVM (AUC 
0.71, 0.73, 
0.73, 0.71)

Age, AMH, BMI, duration 
of infertility, previous live 
birth, previous miscarriage, 
previous abortion and type of 
infertility

the live birth 
chance prior 
to the first 
IVF treat-
ment

N Limited generaliza-
tion of the model 
to other popula-
tions. Model could 
only be used for 
couples who have 
never accepted IVF 
treatment, limited 
application.

Failed to account 
for family genetic 
history and life-
style factors

[7] 1999- 2008, 
184269

Logistic 
regression, 
backwards 
selection 
(AUC 0.73)

Age Pretreatment model: number 
of complete cycles, patient 
characteristics. Post-treat-
ment model: number of com-
plete cycles, patient character-
istics, treatment information 
at first complete cycle 

Cumulative 
chances of 
a first live 
birth 

N

https://primerascientific.com/psen
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[8] 2007- 2015, 
526

multivari-
able logistic 
regression 
(AUC 0.62)

LH, male 
testosterone 
level, sperm 
motility

Type of infertility (primary/
secondary); Duration of in-
fertility (months); Female age 
(years); Parity (n); Average 
menstrual cycle length (days); 
Uterine abnormalities (yes/
no); Antral follicle count 
before stimulation (number 
of follicles ¡11 mm); Alcohol 
use (self-reported; yes/no) 
for male and female; Smoking 
status (self reported; yes/
no) for male and female; BMI 
at baseline (kg/m2) for male 
and female; Male age (years); 
Male testosterone (nmol/l); 
Male inhibin B (ng/l); Male 
FSH (IU/l); Male LH (IU/l); 
Total testicular volume (cc); 
Suspected primarily diag-
nosis of azoospermia (OA/
NOA) before sperm retriev-
al. Number of TESE-ICSI 
cycles; Spermatozoa (fresh or 
frozen–thawed); Motility of 
spermatozoa (oocytes inject-
ed with motile spermatozoa/
immotile spermatozoa or a 
combination of both for each 
individual cycle); Number of 
oocytes retrieved.

live birth 
in couples 
undergoing 
ICSI after 
successful 
testicular 
sperm 
extraction 
(TESE-ICSI)

Y Paternal BMI as a 
predictor may help 
improve the model 
if the values are 
not missing a lot.

[9] 2012- 2016, 
739

Binary re-
gression with 
out interac-
tion terms 
(AUC 0.688)

women’s 
age, AFC, 
AMH; ovarian 
reserve mea-
sures

AMH, AFC, women’s and 
men’s age, body mass index 
(BMI) both for men and wom-
en, smoking status, previous 
diagnosis, type of treatment 
(IVF/ICSI), having had previ-
ous deliveries, ethnicity

Live birth in 
fresh cycle

N Subgroups were 
created after a post 
hoc analysis of the 
data and this might 
be a source of bias.

[10] April 2016 
to February 
2018, 500

KNN, SVM, 
Neural Net-
works, Naive 
Bayes, Ran-
dom Forest, 
Decision Tree 
(AUC 0.87 - 
0.97)

FSH/HMG 
dosage, 
contraception 
duration and 
the number 
of germinal 
vesicle (GV) 
quality oo-
cytes

Clinical data, Female patholo-
gy data, Male pathology data, 
Embryological data, Semen 
analysis data

HCG Y Authors used BHCG 
as a predictor. 
However, HCG is a 
hormone produced 
in the body during 
pregnancy and 
thus should not ap-
pear as a predictor 
for pregnancy.

Table 1: A comprehensive review of machine learning for IVF literature.
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Materials II. “Standardized” Machine Learning Pipeline: Why does it always fail to replicate?

     Our machine learning analysis relies on our private IVF dataset, comprising approximately 6,000 data instances and around 2,000 
unique patients. We embarked on replicating a “standard” machine learning workflow for predicting pregnancy and live births using 
our dataset. This replication encompassed the comprehensive methods found in the existing literature. Our approach could be delin-
eated into three distinct phases: exploratory data analysis, data pre-processing, and model fitting. The primary goal was to assess the 
limitations of common machine learning workflows in the context of IVF prediction.

     To gain a better understanding of the dataset, we conducted exploratory data analysis focusing on the distribution of variables, the 
total number of cycles, and the dropout rate. Initially, we examined the distribution of 15 predictor variables, including age, BMI, and 
other test results, across the ‘pregnant’ and ‘non-pregnant’ groups. The majority of patients underwent only one cycle, with the maxi-
mum number of cycles in this study being eight. There are in total 5196 cycles, and 4050 of those are cycle 1. The pregnancy rate for the 
first 3 cycles gradually decreases from 0.699 to 0.669 to 0.617, which is reasonable as the patients would continue the IVF treatment 
if they didn’t get pregnant or achieve a live birth in the previous cycles. The pregnancy rate for the later cycles fluctuates from 0.813 in 
cycle 4, to 0.462 in cycle 5 to 0.5 in cycle 6. There were no successful pregnancies recorded for cycles beyond the sixth.

     Having understood the trend between the number of cycles and pregnancy rates, we aimed to further analyze patient behavior to 
understand why certain patients opted for additional cycles after a failure, while others chose to discontinue treatment. Dropout rate 
for each cycle is defined as the percentage of people who didn’t continue another cycle after not achieving a live birth. The dropout rate 
remains relatively stable for the first 3 cycles, 0.34, 0.357, and 0.317 respectively.

Figure 1: Number of pregnancies vs non-pregnancies per cycle.

     During the data processing phase, as many features exhibit over 50% missingness, it may not be prudent to impute these variables. 
In medical settings, missingness can sometimes be a latent indicator of the patient’s overall condition, rendering imputation unneces-
sary. Consider, for instance, the absence of a male fertility test and corresponding sperm quality values; this might suggest the use of 
high-quality donor sperm, with the clinician deeming a sperm quality test unnecessary. In this context, imputing data using either the 
mean sperm quality or a K-Nearest Neighbors (KNN) inferred value from similar patients’ data could mislead the model. Therefore, we 
have introduced an indicator for the presence of a test in all data entries to assist the model in capturing this information.

https://primerascientific.com/psen
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Figure 2: Number of dropouts per cycle.

     The optimal results for predicting pregnancy, using Logistic Regression, Random Forest, SVM, Neural Network and XGBoost models, 
are approximately 0.68, and for predicting live birth, they are around 0.69. We tested and tuned hyperparameters employing a grid 
search over an extensive set of combinations. For Logistic Regression, our search encompassed the solver, norm of the penalty λ, and 
the magnitude of λ. For Random Forests and XGBoost, we investigated parameters such as the maximum depth of trees, gamma, regu-
larization lambda, scale of positive class weight, subsample rate, and the number of trees, covering over 2000 combinations. Below is 
a performance chart depicting various combinations of methods employed:

Model AUC Pregnancy AUC LiveBirth

Logistic 0.64 0.65

Random Forest 0.65 0.67

SVM 0.65 0.63

Neural Network 0.67 0.69

XGBoost 0.68 0.69
Table 2: Standardized ML Pipeline Results.

    Despite its performance agreeing with most of the previous work [6, 8, 9], a standardized ML pipeline is not able to replicate the 
stellar performance of up to 90 per cent AUC in [10]. This prediction problem presents significant challenges due to the limited size of 
the dataset, which comprises only 6000 rows and 2000 unique patients. Furthermore, crucial features are missing, such as the BMI and 
age of the male partner, Antral Follicle Count (AFC), duration of infertility, and alcohol/smoking habits of both parents. Additionally, 
data on specific metrics, like the number of follicles measuring between 10 and 14 mm in diameter on the day of hCG injection, and 
many other pertinent features, are absent. Some data, such as the living habits of the male partner, are challenging to collect, and the 
lack of these features could be a key reason why conventional machine learning models struggle with this dataset. Therefore, given 
these limitations, it would be unrealistic to expect a single model trained on this dataset to perform exceptionally across multiple 
datasets.

Methods I. Stage-by-Stage Modeling 

    Due to the sequential nature of IVF, a frozen cycle can be divided into consultation, thaw, uterus prep, and transfer phases, culmi-
nating in the pregnancy/live birth outcome. Directly estimating live birth or pregnancy outcomes usually requires collecting results 
from all these stages and processing them through a machine learning model. However, this approach may not be feasible nor provide 
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timely insights for patients or clinicians.

    Therefore, we segmented a full frozen cycle into distinct phases: consultation, thaw, uterus prep, and transfer, excluding the final 
post-transfer phase, which would involve predicting pregnancy/live birth outcomes. At each phase, we identified key measurable out-
comes and built models to predict them using only the available predictors at that stage. The architecture of this stage-by-stage model 
is illustrated in the figure 3 below.

     The outcomes at each phase, along with general measurements and data from any previous fresh cycles, become the input for model 
building in the subsequent phase. Our dataset includes frozen cycle patient data, with some patients having undergone fresh cycles, 
hence these general measurements incorporate the patient’s previous data from fresh cycles, pathology, and demographics. The initial 
consultation, the first step in the IVF process, is an opportunity for the clinical team to learn more about the patient’s medical history 
and begin designing a customized IVF treatment plan. After a comprehensive work-up of Day 3 hormone levels and other preliminary 
tests, the care team prepares patients to begin their IVF cycle.

     In the thaw phase of Frozen Embryo Transfer (FET), a previously frozen embryo is thawed and transferred into a prepared uterus 
for the possibility of having a baby. From consultation to the thaw phase, we expect to have general demographic data such as BMI, age, 
smoking status, previous abortions, prior IVFs, gravida, para, and other fresh cycle features. The outcome variables we aim to classify 
at this stage include tests like PGS TE bx thaw, PGS D3 bx thaw, and clinical outcomes like Concatenated Embryo Quality, number of 
embryos survived, and number of vials thawed. These predictions achieve much higher performance than directly estimating live birth 
or pregnancy outcomes. The FET-IVF cycle with hormonal support starts at the end of the previous menstrual cycle, similar to a con-
ventional IVF cycle. Medications like GnRH agonist Lupron are administered to control the reproductive cycle. Following menstruation, 
a baseline ultrasound and blood work are ordered, and if favorable, estrogen supplementation begins.

    At the Thaw → Uterus Prep phase, we include all previous phase features plus the predicted outcomes, focusing on variables like 
Max P4 (Frozen Query), and Last Endo Thickness Before Transfer. Elective Single Embryo Transfer (eSET) is conducted for suitable 
cases, transferring a single healthy embryo to maximize the chance of a healthy pregnancy. Three to five days after egg retrieval and 
fertilization, embryos are transferred into the uterus. If an embryo implants and grows, pregnancy results. Any unused embryos may 
be frozen for future use. 

     During the Uterus Prep → Transfer phase, we incorporate all previous phase features and outcomes, predicting the number of em-
bryos transferred. After transfer, patients undergo a post-transfer period where they continue progesterone therapy for two weeks. 
Pregnancy is confirmed by blood test and ultrasound, and the patient is monitored until delivery. 

Methods II: Subgroup Modeling: Finite Mixtures of Binomial Logit Regressions

    In the realm of in-vitro fertilization (IVF) combined with machine learning (ML), a pervasive challenge emerges in the form of het-
erogeneity. The inherent diversity of patient populations, each with its unique set of characteristics, treatment protocols, and demo-
graphics, contributes to this complexity. Collecting comprehensive data variables that encompass the entirety of this heterogeneity is 
an arduous task, often hindered by logistical and ethical constraints. Notably, variables critical for predicting IVF outcomes, such as 
patient-specific health metrics, lifestyle factors, and individualized treatment plans, vary significantly across patient groups. Conse-
quently, attempting to create a unified predictive model that accounts for this heterogeneity becomes a formidable challenge. It is in 
this context that the utilization of a Finite Mixture of Logistic Regression (FMLR) proves to be both justified and highly valuable [12]. 
FMLR provides an elegant framework to accommodate the diverse subpopulations within IVF data, allowing for the development of 
more tailored and accurate predictive models [13].
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 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Rethinking Challenges of Machine Learning in Assisted Reproductive Technology 24

Figure 3: Phase-by-Phase Modeling.

     The FMLR model can be represented as follows: Let Yi represent the binary outcome for the ith observation (0 for failure, 1 for success), 
and let Xi denote the vector of predictor variables for that observation. The FMLR model is expressed as:

     , where j represents the number of latent classes or subgroups in the mixture model. Πj is 
the probability of belonging to the jth latent class. Pj is the logistic regression probability of success for the jth class, where βj denotes the 
vector of regression coefficients specific to that class.

Results and Discussion 
Results Interpretation I. Stage-by-Stage Modeling

     Table 3 illustrates a breakdown of our phase-by-phase prediction of different clinical variables. These findings may suggest that a phase-
by-phase modeling approach holds high promise for clinicians, enabling them to systematically analyze the potential for pregnancy at each 
step of the IVF process. Furthermore, the interpretation of these improved predictions indicates that data from fresh cycles can serve as 
strong predictors for subsequent results in frozen cycles. The transition from thawing to the Uterus Preparation phase and from Transfer 
to the Outcome phase presents the greatest challenges for the models in terms of prediction accuracy. This insight potentially explains why 
IVF, as a field, still poses considerable complexities for machine learning specialists. Our results underscore the valuable role of ML in offer-
ing insights to clinicians, particularly during the consultation-to-thaw and uterus prep-to-transfer phases. 

https://primerascientific.com/psen
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Variable Name AUROC Accuracy

Consultation →Thaw Phase

PGS TE bx thaw 0.92 0.86 

PGS D3 bx thaw 0.84 0.90

Concatenated Embryo Quality 0.92 0.96

Thaw from cryo all 0.80 0.73

# Embryos thawed 0.73 0.68

# Embryos survived 0.78 0.71

# AH’d 0.84 0.82

# Embryos available at thaw 0.72 0.67

# Vials thawed 0.76 0.70

Thaw →Uterus Prep Phase

Max P4 (Frozen Query) 0.72 0.74

Last Endometrium Thickness 0.76 0.73

Uterus Prep →Transfer Phase

#Embryos Transferred 0.95 0.94
Table 3: Phase-by-Phase Modeling Performance.

     Phase-by-phase models offer a valuable avenue for interpreting the significance of clinical factors at each stage of the IVF process. 
In this context, we provide illustrative examples of modeling results that align with clinical sensibility. Within the Thaw → Uterus Prep 
phase, we achieved successful predictions for the “Embryos Trans” variable, representing the number of embryos successfully trans-
ferred during the subsequent transfer phase. Notably, several pivotal clinical factors emerged as key contributors to our predictive 
model, shedding light on their importance in shaping the outcome: 

Figure 4: Interpretable results from Phase-by-phase modelling.

     We could see that number of vials thawed, number of embryos survived, and number of embryos thawed, are all outcome variables 
in our previous phase models (thaw), and this means our design of a phase-by-phase split is clinically sensible and successful. Another 
example here would be the “Embryos survived” variable at the Thaw Phase. Here we could see that the model uses clinically sensible 
factors such as age, FSH hormone, and previous abortions.
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Results Interpretation II. Subgroup Modeling

     We picked age, number of embryos transferred and ICM grade as predictors, constructed age as a polynomial variable with a degree 
k from 1 to 5 and apply the FMLR model having an increasing number of components C from 1 to 5 to fit. We used a combination of 
Bayesian Information Criterion (BIC) and Cohen’s Kappa as the indicator to select the most appropriate number of components. Our 
best performing model was with C=4 and k=3, with a test Cohen’s Kappa of 0.889 and accuracy of 0.95 on 1389 test data points.

Figure 5: Alluvial Diagram of Identified 4 Subgroups.

     Figure 5 shows an alluvial diagram of the 4 hidden subgroups, characterized by different age, embryos transferred, ICM grade distri-
butions that lead to different pregnancy outcomes. Group 1 has mid ICM grade, low number of embryos transferred, 25-45 years old; 
group 2 has mid-to-high ICM grade and usually older than 30 years old; group 3 has mid tier ICM grades and usually older; group 4 
has highest ICM grade, small number of embryos transferred and youngest age. This analysis underscores the value of subgroup mod-
eling in helping clinicians discern hidden patterns within heterogeneous data. By revealing these distinct subgroups, clinicians gain 
a deeper understanding of the patient population, enabling them to tailor treatments and interventions more effectively to specific 
subgroups, ultimately leading to improved patient outcomes. Distinctively, group 1s has below 40 chance of getting pregnant while 
Group 4 has over 88% of chance of getting pregnant, which could help clinicians separate out these patient subgroups early and design 
different treatment correspondingly.

Conclusion

     In conclusion, the endeavor to predict pregnancy and live births in the realm of in-vitro fertilization (IVF) has presented formidable 
challenges over the years, marked by inconsistent performance across various studies. This paper has been dedicated to a thorough 
review and critical analysis of the limitations inherent in current research practices. To chart a course towards more robust predic-
tive models in the future, we have introduced a standardized machine learning pipeline, offering invaluable guidance to forthcoming 
researchers in this field. 

https://primerascientific.com/psen


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Rethinking Challenges of Machine Learning in Assisted Reproductive Technology 27

     Moreover, the core contribution of this work lies in the proposition of two alternative modeling approaches: phase-by-phase model-
ing and subgroup Finite Mixture of Logistic Regression (FMLR) modeling. These innovative approaches exhibit a harmonious blend of 
interpretability and high-performance prediction. Notably, they not only enhance predictive accuracy but also provide clinicians with 
clinically sensible explanations, aiding them in making informed decisions at crucial junctures of the IVF process. 

     One of the key takeaways from our research is the illumination of the intricate nature of the IVF cycle, offering insights into the chal-
lenges encountered by machine learning tasks in discerning “when,” “who,” and “where” these difficulties manifest most acutely. Such 
revelations have the potential to invigorate future endeavors in data collection and patient engagement processes, further refining the 
efficacy of IVF prediction models.
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