PriMera Scientific Engineering
Volume 3 Issue 1 July 2023
DOI: 10.56831/PSEN-02-060
ISSN: 2834-2550

PriMera
Scientific
h | v Publications

Preventing Insider Attacks in Databases

Type: Thesis
Received: May 30, 2023
Published: June 06, 2023

Citation:

Vijay K Chaurasiya., et al.
“Preventing Insider Attacks in
Databases". PriMera Scientific
Engineering 3.1 (2023): 03-32.

Copyright:

© 2023 Vijay K Chaurasiya., et
al. This is an open-access article
distributed under the Creative
Commons Attribution License,
which permits unrestricted use,
distribution, and reproduction
in any medium, provided the
original work is properly cited.

Sourav Mishra and Vijay K Chaurasiya*
Dept. of Information Technology, Indian Institute of Information Technology Allahabad, Prayagraj,
India

*Corresponding Author: Vijay K Chaurasiya, Dept. of Information Technology, Indian Institute of

Information Technology Allahabad, Prayagraj, India.

Abstract

Many web applications that rely on centralized databases face vulnerabilities to insider at-
tacks. While these systems implement multiple layers of security measures against external
hackers, they may overlook the threat posed by employees who are already within these securi-
ty layers and have access to privileged information. Users with administrative privileges in the
database system can potentially access, modify, or delete data, while also manipulating corre-
sponding log entries to erase any evidence of tampering, making detection nearly impossible.
While one approach could involve developing methods to detect and trace such attacks, along
with recovering the original data, this report takes a different perspective. Instead of focusing
on detection and recovery, we explore a new direction: ensuring that attacks do not occur in the
first place. By establishing a system that comprehensively safeguards data integrity, the need
for detection, tracing, and recovery can be minimized or eliminated. This report investigates the
prevention of insider attacks on databases by utilizing Bluzelle, a NoSQL database that offers

decentralized database solutions for decentralized applications.

Keywords: Tampering; Centralized Database Systems; Insider Attack; Detection; Recovery; In-
tegrity; Bluzelle

Introduction

Bradley Manning and Edward Snowden who were a part of the US military and were considered
trusted people, stole critical intelligence documents and released them. The worst came later in 2015
when the Office of Personal Management of the US disclosed that someone had acquired personal
information of 22 million federal employees, including employees with the highest level of security
clearance. Whoever the thief, they put the security of an entire country at risk. Did they get caught by
the security measures in place? No.

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen
https://doi.org/10.56831/PSEN-02-060
https://primerascientific.com/psen
https://primerascientific.com/

Preventing Insider Attacks in Databases 04

Here we are talking about preventing attacks coming from people we trust. This can be achieved by monitoring behavior of users
and how they interact with the organization’s database, analyze the query logs which are records of questions that people ask to the
database and the way they ask them. One may think that we are overreacting, we should trust our employees which is completely

correct, but it is better to be prepared than being sorry later.

An insider attack is launched by an authorized personnel who is familiar with the network architecture and is aware of the system
policies and procedures. There is usually less security against insider attacks because many organizations focus on protection from ex-
ternal attacks. Insider attacks can affect security elements of the system, steal sensitive data, inject trojan viruses in the system, affect
availability of the system by overloading storage or processing capacity which will ultimately lead to system crash. Internal intrusion
detection systems (IDS) protect organizations against insider attacks but their deployment is far from easy. Employees must be made

aware of certain rules and regulations which ensure that no false alarms are raised.

“In 2008, an incident occurred involving Terry Childs, a network engineer employed by the San Francisco Department of Telecom-
munications and Information Services. During this incident, Childs modified the network passwords, effectively restricting access to
FiberWAN for a duration of 12 days. Subsequently, Childs was convicted of felony network tampering. The city of San Francisco in-
curred significant costs in the process of regaining control of the affected systems, amounting to $900,000. Moreover, the insider attack

had far-reaching consequences, impacting approximately 60 percent of the city’s services.

The Organization

o \Veb Application
Co—

C—

—~2

=@

Databases

Malicious
Insider

A lot of web or mobile applications that we use today rely on centralized database systems. Normally database servers are secured
behind layers of firewalls and certain access control policies are implemented which protect the database from external attacks but do
not fare well against insider threats. This is because these policies provide privileged access to certain users thereby enabling them to

modify the database entries and remove the corresponding database and system logs which makes detection impossible.
Client Side Database Protocol Attack

Each database vendor essentially has a proprietary network protocol and they use this for communication and commands. This is
generally a highly complex and unfortunately very obscure protocol and they often change. This makes them prone to security vulner-
abilities and some of the consequences of this are unauthorized access, manipulation. There are ways to mitigate such attacks : one
is protocol validation engines which can address even the unknown vulnerabilities i.e. we let normal client generated messages get
through and anything that has hidden qualities or features we drop them and the other one is reactive protocol validation measure

which is going to address known vulnerabilities and this will check for specific known attacks.

This attack is a client-side vulnerability. A hex editor is used for looking at some Oracle information.

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 05

P

Y) ine . - e o

COISR140 27 IS TI 2T 20 AK AT S3-5F 54 4% 37 52 49 %4 W “AAC NLE _TEARRITO
002041%0 S2 %% 3D 20 27 2% TH AT-20 4K 4C S AF 41 W %2 WY "SNa" MNLE_Oun
o029s180 52 4% Ak & t
t02041 70 4% 53 ar
o ™ 2T 30 &
002941%0 4% 41 s2 w2
SOFVALAG 4K AT S A
00204100 73 3T 30 W&
002041CO 41 %4 3D 30
oo20e10D0 4% SF aCc 1
002941KE0 20 4K 4C %)
ocolos1re 00 &0 00 00
00204200 & Te 7% &2
oozee210 00 &0 00 00
00204220
002304230
002304240
002062%0
0204280
00204270
00206200
o02042%0
002042A0
0029% R0
002042CO
002¢4 200
002042K0
c020e2F0
00294300
oo03esn10
00208120

4% 4F AR 20) 4% ALTER SESSION SE

This is some DLL information that happens to be in hexadecimal format. The information highlighted on the right this is just a simple
query and it says ALTER SESSION SET NLS_LANGUAGE etc etc. This query this is actually the login stream for a sql query from a client.
The attacker takes advantage of this. He uses his sql client when he logs in to the database and launches the vulnerability and creates

a new user for himself.

e R vew AR e

Bl NEY S ARRAEF mET
oo10s140 27 3% 73 27 20 A

002041%0
00304160
o0res170
ooreslee
oozos1%0
00294 1A0
LLRL 3T 1
eores1CO
002e4100
o02081K0
oores1rFe

00106330

ALTER SESSTON SE

By modifying information on the client the attacker creates a new user on the database. This is very interesting because the actual
user login does not have to even be successful. This can be a completely unsuccessful login. It is the process of logging in that will ac-

tually take advantage of the vulnerability.

Now this works in the unpatched version of Oracle 10 because the database user in Oracle actually operates with DBA privileges. So
if the attacker causes that user to fail via say a buffer overflow for example then he can inject code inside this to actually create a new
user or do any number of things that DBA might want to do. The attacker makes some changes here by taking this Oracle 10 file and

this client log on stream information and it brings over here.

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 06

He then edits this to create a user called hacker and set that user’s privileges to DBA.

On the right side, in the highlighted area you can see a query that the attacker is executing to grant DBA to “hacker”. So in short the
attacker created a user called hacker and set it’s privileges to DBA. He placed this in the sql login stream on client side for Oracle client

10 DLL (which is just a file that happens to be on client side).

WINDOWS | sys e

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 07

Then he goes into his operating system and modifies the clients. He uses a copy command to overwrite his hacked version over the
pre-existing version.

™ —= aigix)
e
IR
Uy Mowmer frcont
Pasword m—

Host String Fa
oK I Cancet |

l'

Then he logs in as the user Scott. Whether the login attemp is successful or unsuccessful doesn’t really matter at this point. Then

using oracle sql+ and as scott he runs the command to select username from all users whose usernames essentially has a “H”.

[# ravscoma S 8

e BN Sesch Oplrs e

-
S0L=Plus Relesse 10.2.0.1 0 - Production on Thu Sep 28 13,51 %6 j
Copyright () 1982. 2004 Orscle. &Ll rights reserved

Connected to
Oraclefi Release 8.1.7.0.0 - Production
Release 8.1 7.0.0 - Production

I
rl.) select usernane fros all_wsers whers usernass Like TML-

He gets the list of user names and you can see highlighted at the bottom we actually now have the user called “hacker”.

Insider Database Privilege Abuse

This example uses a java application this is a standard order form. Many organizations have applications that access the database
directly through this means as opposed to a web front- end. Sometimes this is called the fat client or thick client and generally they’re
installed on the end users desktop.

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 08

ol
|so

| Button

Mickey Mouse 2000 Holes Rd, Cheesetown Shipped 1234000600001005

Fat or Thick Java Client

They connect directly to the database. Thus no web application is required to serve as a bridge between user and database. De-
pending on how well coded this application is, there could be several vulnerabilities that are actually specific to the application and
the backend database. Here we have a malicious insider that has legitimate access to the Java client due to which the simple fact of

them(attacker) using it is not going to send up any bells or alarms. So he downloads an application from the web, in this case it is the
fast java decompiler.

Jad - the fast JAva Decompiler

@ What's New

This is going to allow him to decompile the application that resides on his desktop. This decompiles the java application and the

source code is revealed. There are certain things here that we might find interesting. First we see the ODBC connect and then we see
VEDA_App and VEDA_Pass.

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 09

= alni x|

Fthe G Jewch fromdt few Fome Comn Moo fbveced ndom et alel X
*+DFTUd @R W W L4 B E S 3N e L

Rt jad |

i

3, COMmber Crom oUders where Ovdes

VEDA_App, VEDA_Pass

eateniBuception ex)

2] ! |

For risip, prees F1 i, ca 1,08 = oo 18.07.08 1507143 P e S0 »e

It is actually the database user that this application is coded to operate as within the database. For most clients, their apps will use a
single database user to connect to the database. This is very much like pooled user accounts between a web application in a database
where you might have 10,000 users on an application but they are really interacting with the database is a single pooled user, Oracle

shared accounts, sql shared account something of that nature.

The user authenticates themselves with their own credentials when they leverage their thick client their application connecting to

the database but the connection is usually operating as the database user that is coded in here i.e. VEDA_App, VEDA_Pass. That applica-

tion is going to maintain all the user rights and all the user restrictions.

Now the application sits on the desktop, the attacker authenticates against that app but that app is interacting directly with the da-
tabase. If the attacker operates outside of the application and goes directly to the database then the restrictions the application would
have applied are no longer there. He can operate with the privileges of the database user account i.e. VEDA_App, VEDA_Pass that gives

us access to the application.

] ool b

DGR L RRATM | O v e e 1 @FRFE

Deyect Browses 2 [setect * from o, Users B
1) MPERVA DANVEDA_ »|

J a0 2]

Lk

U wde 08
5 20 Usee Tatiee -
[worsw [fLel I 1JJ
55 daCiep U Username PassvordFirsthame Lastlese Dmail Phonelus C 5 Address Cotamer Ccpate
1 mickeym minnie Mickey MNouse mickeywd... S5S5-1111...3000 Hol... 1334000600001005 10/05
5 \e. 1234000020000508 05/05
. 1204000450001205 12/03
. 1234000000501104 11/04
S55-5555 .. . 500 Hunt.., 12340045§7891108 11/08

1
2 |2 aomaldd scrooge bomald Duck dovaldal...
&] o O 3 [bugsb cercots Dugs Bunay
4
f]

4 taza tazdevil Tazmanian Devil
S elmect cabbits Elmec Fudd

Now this malicious insider opens up a tool called query analyzer. This tool that ships with Microsoft sql so logging in using VEDA_App
and VEDA_Pass the attacker is able to perform a simple query, in this case a SELECT * FROM DBO USERS which gives him very critical

information like username, password, first name, last name, email etc. He can even get credit card information. He can execute any

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 10

query and it would run as long as the user that he is leveraging i.e. VEDA_App, VEDA_Pass has those privileges. In fact this database
user account has the privileges to do pretty much anything within this database if we are able to pull up information this sensitive. So
it must be remebered that even thick clients need to be monitored even if there are no front-end web applications and this is because
monitoring even the raw sql traffic is important to understand how users are interacting with data. This was a user that had legitimate
access but who happened to be malicious as well. They were taking advantage of a poorly coded of the Java fat client as well as the poor
security restrictions on the database back-end so that they could leak much more sensitive information than they would have if they
you had used the thick client for its intended purposes.

Problem Definition

— —
B o s s

Let us consider a database application of a university that allows legitimate users to view and/or update grades of students in var-
ious courses offered by the institute. The users are required to use their login credentials (user id and password) to access the data-
base. The type of access provided varies according to the user. Students can only view their grades in various subjects where as faculty
members can view along with enter/update the grades of students. However there are certain IT administrators who have privileged
access to the database which not only enables them to edit the grades of students but also remove the corresponding database and
system logs. If this happens then the students may find their grades changed but they won’t be able to prove that such changes were

not legitimate. Moreover any faculty member also won’t be able to attribute such changes to any specific administrator.

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 11

Literature Survey

e The paper [2] discusses how data and trust management degrade the efficiency of Intrusion Detection Systems (IDS) and propos-
es an intersection of blockchain and IDS to protect data integrity and ensure process transparency.

e The paper [4] presents SafeWS, a system that uses cryptographic and software engineering techniques along with data manage-
ment principles to prevent and detect website hijacking and unauthorized access.

e The paper [1] uses the immutability and tamper-resistant property of blockchains to detect such attacks. They store some meta-
data corresponding to each database entry on the blockchain. This metadata has a very small overhead but helps verify the
database entries when accessed. Whenever a user wishes to update data in the database, the request is broadcasted across the
entire network thereby making it public knowledge. If the transaction is confirmed by all the stakeholders then the database is

modified otherwise the request is cancelled and the database remains unchanged.

user ata broadcast
logIN modifie transactions

database
modified

However, tackling the problem of data recovery in the event of the attacker deleting the entire database along with the log files, re-
quires a protocol where the entire blockchain network is constantly monitored by the nodes in a completely random manner. First one
node chosen at random monitors the network and is always on the lookout for any change in the blockchain. Then after say 6 seconds
another node chosen at random does the same and after say 1 second another node takes its place and after 9 seconds another and so
on. The time interval between the nodes’ switching should be totally random thereby making it completely impossible for the attacker

to exploit this loophole. But while such a protocol may be theoretically sound, it is by no means practical.
Proposed Methodology

We store the data on bluzelle which is a noSQL database that provides decentralized storage of data to dApps as a secured alternative
on blockchain. It consists of two tokens: BLZ and BNT i.e. external token used for investment and internal token which powers up the
network and gives the owners of masternode a reason to stay operational. BLZ is publicly traded ERC-20 token while BNT are private
and only meant for bluzelle network. There are two parties in a bluzelle network: Producers and Consumers. The producers are like
miners who temporarily provide their computing resources to the network for tokens (BLZ or BNT). This producer economy is called

a swarm of nodes or meta swarm.

WM

SWARM —— SWARM

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 12

A swarm is a collection of nodes that store the same set of data. Bluzelle network consists of many swarms that can store different
sets of data. The consumers are dApps who require an immutable platform that provides decentralized storage. They access the blu-
zelle resources and pay in tokens (BLZ and BNT). The two tokens can be exchanged in accordance to a 1:1 ratio. A unique index system
monitors the network, imposing penalty on the producers that break rules. Producers who perform well are given a chance to become

swarm leaders.

Bluzelle has interconnected servers, each of which replicates the same data, all over the world. The data request of a customer is
fulfilled by the server which responds first. Even if a server goes down there are plenty of others to handle the request. Deployment of

new servers can be done at any time to replace existing ones or to increase geographic availability.

The singleton metaswarm refers to the entire swarm framework while the virtualized metaswarm is a colony of leaf swarms. Data
stored by each leaf swarm is shared with the virtualized metaswarm. The data that network gets from a consumer is split up and stored
as shards between each leaf swarm. This ensures data replication and security so that no data loss occurs in the event of a single node
failure in the swarm. When a consumer wants to retrieve his data, he provides the private key corresponding to its hash value. The

encrypted information on bluzelle ensures that no one can access data without its private key.

Implementation of Proposed Work
Installation and Start

To get started we first install the Bluzelle]S library by typing npm install bluzelle in our terminal.

Then we proceed to type wmic csproduct get UUID in the terminal to get our system’s UUID as it will be required in the codes further.

»Rem Windows

Heroku

We can use Heroku with bluzelle add-on which automatically creates environment variables, in our application to enable connection

to our testnet and provides a dashboard to manage data that our heroku Application committed to testnet.

First we install the Heroku CLI and log in.

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 13

heroku login

Next we deploy an application on heroku and attach the Bluzelle DB add-on to the application as follows:

$ heroku addons:create bluzelledb:test -a YOURHEROKUAPP

Next in our project root we include:

t bluzelle = require('bluzelle');

To connect to a server we give the host and port of a Bluzelle node, and supply a unique uuid for our database.

The following is our Bluzelle JavaScript API:

const bluzelle = require('bluzelle');
bluzelle.connect('ws://testnet.bluzelle.com:51010",
'20626C01-BAE0-E111-B128-960908D33EF5");
lgluzelle.create('myKey', 'myValue').then(() =>
: l:luzelleJ‘ead(‘myKey')Athen(\'alue =>

): // 'myValue'

=> console.log(e.message));
})-catch(e => ole.log(e.message));

Then we use the three configuration variables in the code of our previously deployed heroku application to connect to the Bluzelle

database.

$ process.env.BLUZELLEDB_ADRESS (ex. ws://testnet.bluzelle.com)

$ process.env.BLUZELLEDB_PORT (ex. 51018)
$ process.env.BLUZELLEDB_UUID (ex. d5ffc87e-b447-43cd-98@e-53feed3blafe)

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 14

After that we locally replicate configuration variables.

$ heroku config:get ADDON-CONFIG-NAME -5 »> .env

Then we use our configuration variables in our application by replacing the line we use for connecting to testnet i.e.

bluzelle.connect('v stnet.bluzelle.com:51010','45498479-2447—47a6—8c¢

With environment variables that were set by the add-on:

bluzelle.connect(process.env.BLUZELLEDB_ADDRESS +':'+

process.env.BLUZELLEDB_PORT process.env.BLUZELLEDB_UUID);

For Node.js applications we add an entry into the package.json file as follows:

BluzelleClient =
bluzelle = B nt(

process.env.BLUZELLEDB_ADDRESS + ':' + process.env.BLUZELLEDB_PORT,
process.env.BLUZELLEDB_UUID

bluzelle.co

Cryptographic Keys

We need to provide our own private key to use the database. We install OpenSSL and generate a new key by typing the following com-

mand:

openssl ecparam -name secp256k1 -genkey -noout

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

We receive the following output:

MHQCAQEEIOFXRKLsWMIdZpdDdqYUTLKIDRduwvt/aNa4xyN 1kZgxoA
c¢GBSuBBAAK

oUQDQgAEYVKSk+CjBEuZy IM9G6d8D6Dbv3J7dYDjtrNumB-+enmyJV
MOTPHPGNzxto
QeIbZ1 1 XAWXnUdtOXJHUOkzSy

END EC PRIVATE KEY-

The private key is entered into the private_pem field of the bluzelle constructor. bluzelle-js signs off database operations using this

key. The decentralized swarm then verifies our signatures to enforce security and authorization. Bluzelle uses the Elliptic Curve Digi-
tal Signature Algorithm (ECDSA) on the curve secp256k1 with an SHA-256 hash which are all built-in to the system.

Database Permissions

Each database is created by one owner who is the only one who can add or remove writers. Initially the number of writers is zero

by default. Any user other than a writer trying to modify the database is denied access.

In ECDSA cryptography, the private key is used to generate the public key. The API function of bluzelle-js gives user’s the public key.

Alternately we can get the public key in this way:

openssl ec -in private.pem -pubout

Where the file private.pem contains the private key.

Caching Code (Setup, Read and Write)

Whenever a client wants to read data he will first try to read a key-value-pair (KVP) from Bluzelle’s cache. If the KVP is not in Blu-

zelle’s cache then it is a miss as a result the client will request the data directly from the database.

Firstly we initialize the bluzelle client in our code:

const bz = bluzelle({
entry: 'ws://testnet.bluzelle.com:51010

uuid: '20626C01-BAE0-E111-B128-960908 D33E

private_pem:

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 16

We do the following to read a record from the Bluzelle cache and fall back to our existing database:

®

value = db.zet(key):
bz. (key. value);
value;

For writing records we write to the cache and to the database:

db.pui(key, value)
bz. (key, value)

Experiments and Results
Integrating Bluzelle Cache

Suppose I have an online game whose database is in India. If suddenly the game takes off in England then I will have to setup another
server and replicate everything. Then if the game takes off in China then I have to do the same thing all over again. This incurs overhead
in terms of time as well as money. But with bluzelle there is no need to switch out, replace or remove. It is added as an enhancement to

the existing code. There is no need to redesign the app. In fact bluzelle can be integrated into any app in under five minutes.

Check out the client.js file below:

quickread

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 17

In the highlighted portion we connect to Bluzelle and quickread a key-value pair that is identified by the key id and set the return
value to profile. So what we are doing here is what is called a cache aside pattern. I am first asking the cache “hey do you have this
value?”. If the cache has that value it'll quickly return that value, if it doesn’t have that value which is called a cache miss it won’t return

that value. So hopefully we get a cache hit and profile has the object.
Now if profile does not have it then it is a cache miss. We next go to this line:

client.js

The highlighted line represents what our client will typically already have or what we might have already programmed into it where
we are basically talking to our existing back-end which is probably an existing database server which might be SQL or some sort of
middleware but the point is this is what we already have and all we are doing is adding the single line of code(line 39) above it saying
ask the bluzelle cache first for that value and see if we can quickly get that data back from those out at the edge before we even bother

talking to our middleware.

So the benefit here is pretty obvious. We can get a really quick response to getting our data instead of waiting to talk to our server
on the back-end. Instead of burdening our server with all the additional overhead of talking to it every time we need data, we just get

it from the cache.

Let us keep in mind that sendToServer (line 44 of client.js) is actually calling ultimately something called request data which is on the
server side i.e. server.js. Using an existing server side cache called Redis which is wrapped around our existing database we are reading

our data here from an SQL server or a Mongo server:

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 18

server.js

The highlighted portion of code above represents our existing middleware. Now we ultimately do not want to hit this very often be-
cause readFromSQLServer (line 44) is slow, redisGet (line 41) is slow and there is also latency of talking to the server. But ultimately

whenever we do hit this function we want to add the line highlighted below:

What this line does is it basically tells bluzelle “here is this key-value pair, just store it”. Within seconds of calling this function blu-

zelleset(id, profile) the entire bluzelle network is going to have this id and profile value.
It is stored in the cache and that means within seconds any client that asks for that id value here:

client.js

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 19

Is going to get that profile object:

Really quickly. The cache will have been preloaded with that value and now the cache is active for that object.

So for adding data to the bluzelle cache we add this one line to our server.js code:

And in the client.js we add this one line to read:

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 20

So we are not changing any existing code, not removing references to our existing database, not changing references to reading from

the existing database. Everything is the same just one extra line of code for bluzelle.
Creating Node.js Application with Bluzelle Database

Firstly we install bluzelle library in our system by typing in npm install bluzelle. Then we type in the following code in our editor:

const

In line 1 we use the require command to import the bluzelle library. In line 2 we connect to testnet.bluzelle.com which is a bluzelle
lovelace testnet and provide a namespace variable javascript_demo. We then create a key-value pair with the value of the key myKey
and value myValue. We then read back “my key” we should get back “my value” and we will print that out. We then update the key-value
pair with key myValue to newValue. We then read it again and display it on the screen. Now, if everything works as planned we should

first see the value myValue printed on the screen followed by newValue. We save the code as demo.js.

We go to a CRUD client and validate the namespace javascript_demo and see that those key value pairs are not already there.

Bluzelle Database Editor

' bluzelle

Address: Port
esinet biuzele, com 51010
i

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

21

So we find an empty database.

Bluzelle Database Editer

' bluzelle

Then we run the code by typing node demo.js in our terminal:

loquitus@eclipse:~
/home/loquitus

BN loq
loquitus@eclipse
31
lue

loquitus@eclipse:~

So we see that we got the desired output myValue followed by newValue. Then we go to the CRUD client to verify what appears.

Bluzalls Database cditor

-+% bluzelle

o]

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 22

So we have myKey as expected and then we click on it to check its value.

<> =

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

23

And as expected it has the last value was set to which was newValue.

CRUD Operations using Bluzelle APIs

Let us take a look at an application which will spool up a four node swarm on my machine. It will be alocal swarm and the application

called swarm spooler. We can see that it has created a four nodes swarm and these four nodes are running a locally on our machine.

@ T Running node with ID: 2C U4pLge
- Ethereus Address I0: 21
3 Local 1P mr—ux 127.8.0.1
"8 On port: 49151
» Token Balance: 40891.6 ETH
& Used Storage: @ Bytes
]]
12019-95-30 18:56:08.080600 UTC] [0x80000001131935c0] [debug] (audit. cpp:d6) - starting primary alive tiser
080669 UTC] [9x000800911281e5cH] [info 1 (Bain.comi225) ~ starting 12 vorker threads
198, 080815 UTC] [into
Z1210C Qcud Ty
s 10¢ 21
Local 1P Address: 127 ' 0.1
on port
Token Iclunu lﬁl 6 ETH
Used Storage: @ Bytes
2019-95-30 x80000001131935c8] [info | (main.cop:22S) - starting 12 worker threads
201905~ 0x2000000117eb5C0)! Im] (ethereun. m:m - received response: {"status”:"1","message”:"0K","resu
2019-95- 17ebcSc _peers.cpp:39) - Reading peers from ./peers. json
2019-95-. ul o _peers.cpp: 181) - Found 4 new peers
2019-05- 7ebcSch] [info | (monitor.cpp:65) - No monitor is configured; stats will not be collected
2019-85-38 199028 TebcSc) [info) (crypto.cpp:33) - Using OpenSSL 1.1.1 11 Sep 2018
2019-05-30 1 i 17ebcSct] [info | (main.copiddl) - Using in-wemory testing storage
nn—-s—.\l 5 17ebcSch] [debug]l (database_pbft_service.cpp:278) - next_request_sequence: 1
ebcscol [debug) (audit. copid6) — starting primary slive tiser
mus-u u sml mm uvu 17ebc5c8] [info | (main.copizel
H Running onde t -m- ID! 0CAQ Yiov | 2N30VUNKUS TaxallEp | 1/ XX ZMBII6VE 3003
Ethereus Addres: 21
I Local 1P an 7.8
L
v
r 281e5¢0)
[935c0 .
s main.cepiddl) - Using in-memory tunm storage
5 281e5¢0] [info | (main.copidl) - Using in-memory testing storsge
dedug | _pbft_service.cpp:278) - next_request_sequence: 1
3 261e5c8] [debug) _pbft_service.cpp:278) - next_request_sequence: 1
[(x00000091131935c0] [info | (main.copiddl) - Using in-memorly testing storage
0x00000001131935c0] [debug] (database_pbft_service.cpp:278) - next_request_sequence: 1
debug] (audit.cppid6) - starting primary alive timer
[2019-05-39 18:56:/ “ @80245 UTC) 281e5c0] [debug] (audit.cpp:d6) - rting primary alive timer
[2019-95-30 u;mu!m urc) info] (main.copi2el) -
Swarm 10:
Running node with ID: MF oKTY rySVILGET | Lo 2HMraYqoK
Ethereus Address 10: 21
Local IP Address: 127.0.0.1
On port: 49153
Token Balance: 48891.6 ETH
Used Storage: 0 Bytes
[2019-05-30 18:56: 08, 080409 UTC) (GxB000000 linfo | mmﬂlﬁl = starting 12 worker threads
[2019-85-30 u;uqu.m urc) lhm"zllek.f [info] a2e1) -
IARKGA TSP 2 gc?

Used Storage: § Bytes

[2019-95-30 18:56: 08, 080600 UTC] (@x80000001137935ch) [debug] (audit.cpp:46) - starting primary alive timer
[2019-05-30 18:56:08.080680 UTC] (0x000000011281e5¢0) [info | (main.copi22s) - rting 12 worker threads
[2019-85-30 18:56. 080815 UTC] (0x00000001137935¢8) [info | (main.cop:i2el) -

235cH i
{exevesenariznie: [debug] |
0x00080001000235c8] (info 1 (

701905 aua
eioes3s 1aise: - main.
Swarm 10:

Running node with 10: 0212) BCA
Ethercus Address I0: 932c 7630
Local 1P Addressi 127.9.9.1
On port: 4915

ken Balance:
TUsea Storece: 8 Bytes

starting 12 worker threads

12819-45-38 18:56:08. 988408 UTC) linfo 1 2225

12019-85-38 18:56: 88, 880460 UTC) linfo § (220).
Swarm ID:

unning nods with 10¢

3 UdpLac

[2019-05-38 18:56:08.080600 UTC| (6x00000081131535c8) [debug] (sudit.cpp:dl) - starting primary alive timer
12019-85-38 18: “xu 288680 UTC) linfo | 2225) - starting l? worker threads
r wTc) 3I7935c8) linfo | (-.nhme 201) -

Swarm ID:
Running node with Ii AYHKOZ1 2) BCAGYFRAEEARODODAENG2LAY EQC: s 1OD4xu]
Ada 1

Token Balance: 48891.6
used Storsge: @ Bytes
(2019-85-38 18:56:08. 8805 [0x86800001137935c8] [info | (

wTe) main.cop:225 hreads.
06 190437 UTC] [8x8088000117ebc] (ethereun.cpp:35) - received response: {“status™
BR]198739 UTC] (0xA00AA00117encScal [info | (haatstran eers.con:19) - Reading oeers from ./

) - starting 12 worker t

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

24

[2019-05-30 18:
(2019-85-30

56:08.200600 UTC) (0xD0000001137935c0)
188.080680 UTC) (0x000000011281e5c8)

[2019-85-30 18:56:88.080815 UTC] [0x00800081131935¢0)
Swarm 10:

[debug] (audit.cpp:d6) - slar(.\"&rmw alive timer
linfo | (main.copid2s) - starting 12 worker threads

linfo] (main.cop:281) -

Running node with ID: 12 BCAQ AYtacud P/ I/LBLZETBIP; 10D4kuw)!
Ethereus Address ID: 32¢ 3680401218
Local 1P Address: 127.0.0,1
On port: 49152
Token Balance: 40891.6 ETH
Used Storage: @ Bytes
(2019-05-30 0x00000001131935c0) [info | (ma) - starting 12 worker threads
0 18: 17ebcSct] ldebugl (ethereum.cpp:35) - recelved response: {“status™:*1",“message”:“0K","resu
156108, 0x0000000117ebcSch] linfo | (bootstrap_peers.cpp:39) - Reading peers from ./peers.json
156108, 191046 UTC) [0x0000000117ebc5c0) [info | (bootstrap_peers.cpp:181) - Found 4 new
198868 UTC] [0x2000000117ebcScd] [info | (monitor.cpp:65) - No monitor is configured; u.u will not be collected
. 199028 UTC] [0x8400000117ebcSch] [info | 133) - Using OpenSSL 1.1.1 11 Sep N
203309 UTC] [0x0000800117ebcScd] [info | - Us. in-nemory testing slaragt
:56108.203536 UTC) (0x0000000117ebcSc0] [debug] (database_pbft_service.cppi270) - next_request_sequence: 1
[2019-05-38 . 205639 UTC) |0x0000000117ebc5ch] [debug] (audit.cpp:48) - starting primary alive timer
(2019-85-30 18:56:08.205826 UTC) (0x0000000117ebcScl] linfo | (maln.cop:28l) -
Swarm 1Dt
Running node with ID: NFYWE 212 0CAQ Jvadrogchry SknuaTsphf Yy ZN3oVUNKUS JaxaUEp 1/XXHx2MbhdGvE 100y
Ethereus Address 1D: 2 3JeBdda121a
Local IP Address: 127.0.0.1
On port: 49150

Now we go to the swarm talker. It uses the Bluzelle API to talk to the swarm I have just created. First thing is I need to connect to the
swarm using the Bluzelle API initialize function which takes a public and private key for the cryptography part of creating and reading

keys. It also takes an endpoint so that it knows where the swarm is and a swarm ID. The endpoint is my local host address and the port

of one of the nodes in the swarm.

T mnt)

* comst std:

tstring END_POINT{"ws :/ (EERCICIEY: ds15e~};

At (bzapiz:initializelpub_key, priv_key, END_POINT, SWARM_ID))
1

try

i

red_ptredzapl

response =
stdizcout

response
$10:: cout

response

s1di:cout <

response
stdi:cout

response

stdizcout <<

tstring mmmm
feout <

= cache->update(“keys”,

= chckaloauirk_ioad! gt}
< “quick resd:

istring db wldl mydb"};
1database> cache{ brapi:thas_db(db_uuid) ? bzapi:sopen db(db_vuid)

bzapis:create_db(db_uuid)};

sswarm_status()}:
respon: iiendl;

cache xcren ", A very ice vale.");
“ereate:\

- cache oquich_n
“quick read:

o ntter valus than the old one.");

“updatei\n" << responss

AR" <c response << std:iendl;
cache-skeys();
“heys:\n" << response << sta:iendl;

It will ask that one node for a list of the rest of the nodes in the swarm and then it will ask each of those swarms for a status and choose

the fastest node to connect to from then on. Every now and then it pulls the swarm to find out which one is fastest and always tries to

use the fastest node. Once we’ve initialized that connection we can create or open a cache and that’s what this line here is for:

t << “create:\n” << response

response
stdzicout =<

response
std::cout

response =

stdz1cout

response

stdz:cout «

response

cache-screste("kapt", "A vary nice valoe.");
ssendl;

cache->quick_read("key8™);

“quick read:\n" << response << std:zendl;

cache-supdate(“key®”, "A bnn-v vllul mu the old one.”);

< “update:\n" << respon:
cache-=quick_read(“key8");
<« "quick resd:\n" << response << stdirendl;
inl’u- >keys();
@ys:\R" << response << std:iendl;
cache->remave(“keyl”);
t << “remove:\n" << response << std:iendl;

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

25

So I have chosen myDB as the identifier for my cache.

un: ©

#I (bzapirinitialize(pub_key, priv_key, END_POINT, SwARM_ID))

1

t std::string db_uuid{"DTE"):
stdrishared_ptrebzaplisdatabase> cache{ brapi:ihas_db(db_\ wu) ? nnun sopen_db(db_uuid)}
reate_doidb_uuid) };

TR 010
_status()};

Ut << response << $tdi tandl

response = cache->create(“kay#”, “A very sice value.");
stditcout << “create:\n” << response << std:iendl;

respon:
std:zo

response =
stdricout < “vpdater\n® <<

58 = Gocheoquick rend| ap¥];
out << “quick resd:\n" <= response << std:endl;

cache->update(“key8”, "A better value than the old ome.”);
response << stdizendl;

response = cache->quick_read(“key®");

stds:

respon:
stdiicout <

respon
stdsicout <<

out << “guick read:\n* << response << std::endl;

54 = cache-)I(MII
“keys:\n" << response << stdiiendl;

se = c«mwrml"lﬂ"‘l
remove:\A" << response << §td:i:
e

We will first ask the swarm does it have that cache.

Y Lt

try

const
star

1,

n :r (bzapi:zinitialize(pub_key, priv_key, END_POINT, SWARM_ID))

sta::string db_uu

wutd{“mydb™}.
Hehared. pLrebzapi:datanases cache(M’ brapi:iopen_db
Topis creste oido. mid:

L

tring response{cache--swarm_status()};

11cout <« response << std:rend

std:

response =

very
1cout <= “create:\n* << response << std::endl;

= cache->create(“key®”, “A nice value.

cache-=quick_read(“keys*);

stdiscout <« “quick read:\n" << response << std:iendl;

response
stds

stdt

= cache-rupdate("key8”, "A better value than the old ome.”);
1cout <« “wpdate:\n” << response << stdizendl;

response = cache-quick_read(“key?");
1cout << “gquick read

:\n" << response << std:iendl;

response = cache->keys();

stdt

100Ut <« “Rays:

\n" << response << std:iendl;

esponse - Cache- -r!ﬂnll‘lﬂﬂ I

<< stdizendl;
1482IEEIEEERERL,

If it does we will open the cache. If it does not it will create the cache.

A CMmaiinin

if (bzapi::iinitialize(pub_key, priv_key, END_POINT, SWARM_ID))
{

try
(

const std::istring db_uuld{“mydd"};

std::shared_ptre<bzapi::database> cache{ brapi::has _dbldb_uuid) 7 brapi:ETTICEIEMuuid)
+ brapi:ipreate_ob(db_uuid)};

L L

stdi:string response{cache->swarm_status()};
std1ICOut << response << std:iendl;

response = cache->create("key®”, “A very nice valuve.");
stdiicout << “create:\n" << response << std:iendl;

se = cache->quick_read(“key®");
ua":wt <« "quick read:\n" << response << std::endl;

response = cache->update(“key®”, “A better value than the old one.”);

stdizcout << "update:\n" << response << std:iendl;

response = cache->quick_read("key®");
stdiicout << “quick read:\n" << response << std:iendl;

response = cache->keys();
stdizcout << "keys:\n" << response << std::endl;

response = cache->remove("key®”);
stdiicout << “remove:\n" << response << §td:t
PEIILERELETEEER I LT LA BRI IR 111

endl;
1T

/"

[T

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

26

Return value of these two functions is a database object:

R

try
{

" if (brzapi::initialize(pub_key, priv_key, END_POINT, SWARM_ID))
{

const std::string db_uvuid(“mydb~};
trebyr se> cache{ bz

FIIIETIEEIR I IR IR IIER LR 111 FIEEERIIEI I Ed Y
std::string rupulle{clche xsur! uatu:()),
stdiicout << response << std::iend

response = cache->create("key®”, “A very nice valuwe.");
stdizcout << “create:\n* << response << std::iendl;

response = cache->quick_read(“key®™);
stdizcout << "gquick read:\n" << response << std::endl;

response = cache->update(“key@”, “A better value than the old one.”);
stdiicout << “update:\n" << response << std:iendl;

response = cache->quick_read{“key®");
std::cout << "quick read:\n" << response << std::endl;

response = cache->keys();
stdiicout << “heys:\n" << response << std:iendl;

response = cache->remove(“key®");
Stdizcout << “remove:\® < mpnm << std:iendl;
L, FITIIITEEEEI i [HTTTIETEY

Then we run this and get the following output:

s s

(2019-85-30 11:58:44.108681] [0x000700081b05008) 1l¢hq'l

- Got response for message 5

[2019-05-30 11:58:44.108692] (6xB060700001b65000) (debug] (db_inpl.cpp:180) - Ignoring db response for unknown or already processed a

[2019-05-38
(2019-05-30
remove:

“result™ : 1

(2019-05-30 11:58::

[debug] (db_impl.cpp:175) - Got response for message 6
[debug] (db_impl.cpp:218) - 1 of 3 responses received
'S) - Got response for message 6

2 of 3 responses received
Got response for message 6
3 of 3 responses received
Done processing db response for message &

lexdeoe700081be5008) (debugl ldh I.wl :pp 1!9)

44.123746] (ex000@700001005000) [debugl (Library.cpp:61) - Events run: 77

For the demo the first thing I will do once I have a cache, is ask for the swarm status and print that out:

A a1

create_ab(db_vuid]};

response = cache->create(“key8”, “A very nice value.");
stdizcout << “create:\n” << response << std.fllll

response = cache->quick_read(“key®");
std:icout =< "quick read:\n” << response << std::endl;

response = Cache->update(“key8", “A better velue than the old one.");
stdiicout <« “update:\n" << response << std:iendl;

response = cache->quick_read(“key®");
stdiicout << "guick read:\n" << response << std:iendl;

response = cache->keys();
stdizcout << “keys:\A" << response << std:iendl;

response « cache->remove(m |
Staiicout << “rEmOVE:\A" << response << std:zendl;

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

27

Then I'll create a key value pair and keyO0, A very nice value:

n L L R iy
29 stds :lrl.ruu nlme{cuhe—»mm_nnut()).

w S1di1COUt << response << std:iendl;

L

3 response = cache->quick_read{ “key®");

% stdizcout << “quick read:\n" << response << std:iendl;

¥

n response = cache->update({"keyd”, "A better value than the old one.”);
7] stdizcout << “update:\n" << response << std:iendl;

“

0 response = cache->quick_read(“key®");

“a stdizcout << "quick read:\n" << response << std::endl;

response = cache->keys();
stdizcout <<

s s

: brapis icreate._ bidb_ mlﬂll.

111

“keys:\n" << response << std::endl;
response = cache->remove(“hey®”);
stdizcout << * 1\R" << response << std:iendl;
(HITLIIIENed L L e
B .
Then I'll quick read that keyO:

T
- e S e St SRR S | G § | e e
26
:'N L L L L g
9 stdiistring response{cache->swarm_status()};
] stdiicout << response << std:iendl;

34
-+

36

3

38 response = cache->update(“key®”, “A better value than the old one.”);
39 stdiicout << “wpdate:\n" << response << std:iendl;

“w

It response = cache->quick_read(“key®");

42 std:icout << “gquick read:\n* << response << std::iendl;

43

4a response = cache->keys();

[stdzicout << “keys:\n" << response << std:iendl;

I

47 response = cache->remove(“key®");

a8 stdiicout << “remove:\n" << response << stditendl;

9 FEELERIRE TR TR A TR LR T LR EE TR EEE R BRI R R R ETEEE T
58

Then I'll update the value of key0:

Somemcn Clsbalistn et

1 N L T iy
" tring response{cache->swarm_status{)};

0 out << response << std:zendl;

n

n response = cache->create(“key®”, “A very nice value.");
13 stdizcout << “create:\n" << response << std:iendl;

se = cache->quick_read(“key®");
“quick read:\n" <<

stdsicout << response << std:iendl;

response = cache- xquuk_rud(‘k-n H
stdiicout << “guick read:\n" << response << std:iendl;

response = cache->keys();
stdiicout << “keys:\n" << response << std::endl;

[} response = cache->remove(“key®");
[} stdi:cout << "remove:\n" << response << std::endl;

1] L R T

A better value than the old one

(EHITELTI

JEIEIIIENEE

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

28

Read it again to be convinced that the value has been updated:

& manme

30
n
¥
(¥
34
3
e
]

P
stdiicout << response << std:iendl;

se = cache->create(“key®”, “A very nice value.”);
stdiicout << “create:\n" << response << std::endl;

response = cache->quick_read{“key®");
std:icout << "quick read:\n" << response << std::endl;

response = cache->update("key®”, "A better value than the cold one.”
std:icout << “update:\n" << response << std::endl;

response = cache->keys():
stdiicout << “"keys:\n" << response << std::iendl;

response = cache->remove(“key®”);
Hd'-:wt << “remove:\n* << rupnu << gtd: ml'

}
catch(const std:iexception &e)
{

std:icout << “Caught exception: [* << e.what() << *]" << std::endl;

And then I'll ask for all the keys in the cache:

A OV e v

rﬁmu = cache->create(“key®”, “A very nice value.”);
icout << “create:\n” << response << std::endl;

response = utnt—muich_rnﬂt key®™);
std::cout << “quick \n" << response << std:iendl;

response = cache-~update(“key@”, “A better value than the old one.”);
STdI1COUT << “update:\n" << response << std:iendl;

response = cache->quick_read("key®");
std:iicout << “quick read:\a" << response << std::endl;

response = cache->remove(“key®™);
stdiicout << “remove:\n" << Fesponse << std:iendl:

L i i

}
:auh(cun std:iexception Ge)

stdiicout << “Cawght exception: [<< e.what() << *]" << std::endl;

Finally I will remove the key0 from the cache to clean up:

& e e

P
response = cache->create(“key®”, "A very nice value.”);
std:icout << “create:\n" << response << std::endl;

response = cache->quick_read(“key®™);
stdizcout << “quick read:\n" << response << std::iendl;

response = cache->update(“key@”, “A better value than the old one.”);
stdiicout << “update:\n" << response << std::endl;

response = cache->quick_read(“key®”);
std:icout << “quick read:\n" << response << std::endl;

response = (Kﬂf‘)ﬁm“

)
catch(const stdiiexception &e)

std:icout << "Caught exception: [* << e.what() << *]" << std:iendl;

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

29

And if we look at the output you can see what happened. That is our status output which lists all of the nodes and their connection

information:

"uuid® § 218CAD

“port”* :

o)/ L8 | ZETB P JquilkwpM 1 fD04kuw Of

“uuld : "!ﬂ\téumﬂx)l...

“host" 1 ™
“latency”
“port™ : 491!

“uuid™ : ~

And the time it took to talk to them:

“host"
“latency”

“127.0.8.1°,

: 49150,

“port” :
“wuld” :

“host" : "127.0.0.1",
W

It also gives us the value of the primary node:

“uptine™ : "8 days, @ hours, 2 ginutes®

(2019-05-30 11:58:44.0847947] [0x000000018cBdbSce)
3 bytes written

3 bytes written

3 bytes written

368 bytes written

(2019-85-38 11:58:44.067639)
create:

“result™ : 1

(2019-85-30 11:58:44,067737] (0x000000018c8dbSco]

7.
8687

2019-05-31 [exooee700001 LS00]
(2019-05-38 Elxﬂl’mw‘f {

(debug)

rySVOLGET | LEWozHM

2C. TAdSh

(db_inpl.cpp:81) - Sending database request for message 1

(db_impl.cpp:175) - Got response for message 1
(db_impl.cpp:218) = 1 of 3 responses received
(db_impl.cpp:175) - Got response for message 1
(6b_impl.cpp:210) - 2 of 3 responses received
(db_impl.cpp:175) ~ Got response for message 1
(ab_ispl.cpp:210) — 3 of 3 responses received
(db_impl.cpp:199) - Done processing db response for message 1

(db_ispl.cpp:Bl) - Sending database request for message 2

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases

30

Here is the create response we see that it was successful:

If it were not successful, it would also give us an error message, for example, the key already exists

(0190548 H')ﬁ'“ wodyad) loebug)
(20150520 2660631 [debug]
(20199520 1 866096, [debug]
[lll’—”—!. 1 ﬂl“ 067547 ldebug]
[2019-85-39 11:58:44, 067581, [debug]
(2019-085-38 11: uxu.uun @x0000 70000 Tb@sRRR | |

(o0_1mpl.cpp:Zl8) ~ 1 of § responses recelved
(db_impl.cpp: 175) - Got response for message 1
(db_impl.cpp:218) ~ 3 of 3 responses received
{db L. cpp:199) — Done db_re: se_for mess: 1

[2019-05-30 11:58:44,067737 Idebug)
[2019-85-30 11:58:44. 068724 [debug)
[2019-05-30 11:58144. 968739! [debug]
144 [debug]
3 [debugl
347 bytes written
tzn;—os-u 11:58:44,069878] [0x8000700007505088) |debug)
2019-05-30 11:58:44.069897] lm’lﬂﬂfhml [debug)
[an-s—:u 11:58:44.069931] [@x8000700001b85008] debug)
quick read:
Koy : “keyd",
“result™ 1 1,
“value” : "A very nice valve.”

(db_impl.cpp:81) - Sending database request for message 2
(db_impl.cpp:175) ~ Got response for message 1

(db_impl.cpp: 188) - Ignoring db response for mi-nm or already process
(db_impl.cpp:175) - Got response for message 1

(db_impl.cpp: 180) ~ Ignoring db response for unknown or alresdy process

(db_impl.cpp:175) ~ Got response for message 2
(db_impl.cpp:218) ~ 1 of 1 responses received
(db_impl.cpp:199) - Done processing db response for message 2

So I asked for key0 and it gave me the value of a very nice value:

1B DU /BUPOTDED0IE |

[2019-95-30 11:58:44.079015] [0x000000010c83bScd] [debug]

382 bytes written

[2019-95-38 11:58:44,085289
12019-95-39 11:58:44,085325
[2019-85-38 11:58:44.086335
[2019-05-30 11:58:44.086361
1:58:44.

087424 [debug]
087455 [debug]
12019-85-38 11:58:44,087500 Idebug]
update:
“result” i 1

1G0_1ApL. CPPILIS}
(db_imp\. cpp: 189)
{db_inmpl.cppt175)
(db_impl. cpp: 180)

lﬂ 1”[:w 17%)
1210

(db_impl.cpp:81) -

(db_imp1.cpp:175)
(db_imp\l.cpp:210)
(db_impl. cpp: 175)
(db_imp\l.cpp: 210)
(db_impl. cpp: 175)
(db_imp\l. cpp: 210)
(db_imp\.cpp:199)

LOT response Tor message 1

Got response for message 1

GOt response for message 2
1 of 1 responses

processing db

Sending database request for message 3

Got response for
1 of 3 responses
Got response for

- message 3
- 2 of 3 responses

received

Got response far
3 of 3 responses
Done processing db response for message 3

I then did the update or I changed a very nice value for key0 to something else:

“value® : A very nice value.*

[2019-85-30 11:58:44.070015) [0x000000018cBdbScd]
382 bytes written
2019-95-30 11:58:44.085289]
2019-95-30 11:58:44.085325]
2019-85-30 11:58:44. “!”‘
2019-85-30 11:58:44. 086!
2019-05-30 11:58:44. unu
2019-85-38 11 44, 087455/
2019-85-38 11:58:44. 087500]

2019-05-39 11:58:44,087594) debug |
2019-85-38 11 44,088678] debug)
2019-85-30 11:58:44. 088693 aedbug |
2019-85-30 11:58:44.089775] debug |
2019-05-30 11:58:44. 0889791 debug |
348 bytes written

2019-85-30 11:58:44.089695) [0x0000700001bS008] (debug)
2019-05-30 11:58:44.089923] [0x2000700001105000] [debug]
2019-05-30 11:58:44.089058] [0x0000700007085008] [debug]
T.Il(l read:

ks

key®,
r“u'u' 1

(db_inpl.cpp:B1) - Sending database request for message 3
(db_ispl.cpp:175) - Got resgonse for message 3

impl.cppi219) - 1 of 3 responses received
ual.cppmsl -~ Got response for message 3
210) - 2 of 3 responses recelved

L.cpp:

lh_uol.:nnﬂ) - Got response for message 3

mb upl.:pn 210) - 3 of 3 responses recelved
1199) - Done db

.cppiBl) - Sending database request for message 4
.cpp:175) - Got response for message 3

. Here’s the result of the quick read.

Ignoring db response for unknown or already processed |

Ignoring db response for unknown or already processed

(ab_impl.cpp:189) - Ignoring db response for unknown or already processed
(db_impl.cpp:175) - Got response for message 3

(db_impl.cpp:188) - Ignoring db response for unknown or already processed
(db_impl.cpp1175) ~ Got response for message 4

(db_impl.cpp:210) ~ 1 of 1 responses received

(db_impl.cpp:199) - Done processing db response for message 4

PriMera Scientific Engineering

https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 31

And here it is a better value than the old one:

[2019-85-30 11:58:44.087594
[2019-05-30 11:58:44.088678

Idebugl (Gb_impl.cpp:81) - Sending database request for message 4
[debug] (db_impl.cpp:175) - Got response for message 3

[debug] (gb_impl.cpp:188) — Ignoring @b response for unknown or already processed a
lgebug]

[debug]

(db_impl.cpp:175) - Got response for message)
(db_impl.cpp:188) - Ignoring db response for unknown or already processed s

(db,
T

[2019-05-30 11:58:44.090066] (0x000000010c80b5cR] (dedbugl (db_impl.cppil) - Sending database request for message 5

bytes written
19-85-30 11:58:44.104396] (gb_impl.cpp:175) - Got response for message 5
+ 104436 (received
44.1055101 message S
44.185539) received
44, 106519] mun 5
44.106543] .cpps. ses received
144, 106643] ldebug] (db_; upl.u. 199) - Done processing db response for message 5

Finally I asked the swarm for all the keys in our cache. There is only one so it returned an array of one key i.e. key0:

[2019-95-39 11: 10xD00070000THESE0R | [debug] (Ob_impl.cpp:175) - Got response Tor message S
[2019-95-30 11 (@x0000700001005008] (debug] (Gb_impl.cpp:210) - 3 of 3 responses received
[2019-95-39 11: (0x0000700001005000] [debug] (db_impl.cpp:199) - Done processing db response for message 5
keys:
{
“keys® :
[
| I
b
Idebug]l (db_impl.cpp:81) - Sending database request for message 6
[debug] tah.tlv\.:w 175) - Got response for message 5
[debug] (db_impl.cpp:188) - Ignoring db response for unknown or already processed
[debug) :an _impl.cpp:175) - Got response for message 5
[debug] (db_impl.cpp:180) - Ignoring db response for unknown or already processed
2x0000 [debug] (db_impl.cpp:175) - Got response for message 6
[debug] (db_impl.cpp:218) - 1 of 3 responses received
[2019-05-30 11 0x0000 ldebug] (db_impl.cpp:175) - Got response for message 6
[2019-95-38 11 0x0000 [debug) (db_impl.cpp:218) - 2 of 3 responses received
(2019-95-30 11: 0x0000 [debug]l (ob_impl.cpp:175) — Got response for message 6
[2019-05-30 11:! slx“ u!ﬂll ldebug]l (db_impl.cpp:i210) - 3 of 3 responses received

And finally I removed the key to clean up:

(CAE T VU SUIURE] (SEUUNYT UMD LR A33 T DS B ULEILY U TESPUINE TUl weIdeye 4

(debug] (db_impl.cpp:B1) - Sending database request for message 6

[debug] (db_impl.cpp:175) = Got response for message S

(debug] (db_impl.cpp:18@) - Ignoring db response for unknown or already processed
[debug]l (db_impl.cpp:175) - Got response for message 5

[debug] (db_impl.cpp:18@) - Ignoring db response for unknown or already processed

(db_impl.cpp:175) - Got response for message 6
(db_impl.cpp:210) - 1 of 3 responses received
{db_impl.cpp:175) - Got response for message 6
(gb_impl.cppi210) - 2 of 3 responses recelveﬂ
(db_impl.cpp:175) - Got response for message &
(db_impl.cpp:210) - 3 of 3 responses received
{db, db

11:58:44.121675]

1
11:58:44,123746] (0x00007000010e5000) (Ubrary.cpp:61) - Events run: 77

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

Preventing Insider Attacks in Databases 32

Future Work

Bluzelle is not the only player in this game. It has competitors such as MaidSafeCoin, Siacoin, Storj and Filecoin. It is a certainty that
one of these come out on top in the near future and investors in the BLZ token are betting that when the dust settles Bluzelle will be

the last man standing.

Bluzelle has made sure that it is well-positioned to dominate the market by establishing offices in the west in Vancouver, and in the
east in Singapore. It has also made alliances to help it capture market share and become the dominant decentralized database storage

solution.

Currently most of its features are in beta phase while some are being scrutinised before being made available. When fully operational
its storage capacity will be ten million times that of current corporate IT storage at 0.001 the cost per Tb of storage when compared

with current costs. To put it in a nutshell, bluzelle promises all round data security.
Conclusion

Bluzelle is very easy to use and involves writing minimal code to cache our data to it. It has servers available in many data centers
across multiple region thereby providing low latencies and high throughputs to applications. Tiering ensures that Bluzelle Cache can
match our /0 performance needs. Data within Bluzelle Cache is globally replicated across more than 25 global regions. With its client
libraries, one can easily and in a scalable manner store his/her data across bluzelle’s servers. The user’s data is always available, irre-
spective of faults, disasters, or attack vectors. There is no overhead for infrastructure deployment as there is nothing new to deploy.
Customers only pay for the services they use. Customers are able to use Bluzelle as their primary data store or as a replica-set, de-
pending on how they use bluzelle APIs in their codebase. Bluzelle provides all the coding patterns from which customers can choose.
Also there are provisions for quickly adding additional servers to new data centers. Bluzelle uses both symmetric and asymmetric key
cryptography to ensure that data can only be modified by its authorized owners/writers. No organization, including Bluzelle, has any
mechanism to remove or modify data stored on Bluzelle. This is a level of security that simply cannot exist on a centralized platform
including the cloud. It also means that data stored on Bluzelle belongs to and can only be affected by the owner of that data and no one
else. Only they can remove it. Furthermore, Bluzelle will also be offering optional symmetric key encryption for data in transit and at

rest, to ensure that only authorized parties can read the data.
References

1. Shubham Sharma, et al. “Detecting Insider Attacks on Databases using Blockchains”. In proceedings of Workshop on Blockchain
Technologies and its Applications, ISRDC, IIT Bombay (2017).
Weizhi Meng., et al. “When Intrusion Detection Meets Blockchain Technology: A Review”. IEEE Access 6 (2018): 10179-10188.
Deepak K Tosh.,, et al. “Security Implications of Blockchain Cloud with Analysis of Block Withholding Attack”. 2017 17th IEEE/
ACM International Symposium on Cluster, Cloud and Grid Computing (2017).

4. Tzvi Chumash and Danfeng Yao. “Detection and prevention of insider threats in database driven web services”. IFIPTM 2009:
Trust Management I1I (2009): 117-132.

PriMera Scientific Engineering https://primerascientific.com/psen

https://primerascientific.com/psen

