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Abstract

     The Laplace transform has many applications in science and engineering because it is a tool 
for solving differential equations; in this paper we propose a Star-Laplace transform s-step. We 
give the definition of this Star-Laplace transform s-step of function f(t), t ∈ [0,+∞], some exam-
ples and basic properties. We also give the form of its inverse by using the theory of the Laplace 
Transform.
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Introduction

     The Laplace transform is used frequently in engineering and physics; The Laplace transform can also be used to solve differential 
equations and is used extensively in mechanical engineering and electrical engineering. The Laplace transform reduces a linear dif-
ferential equation to an algebraic equation, which can then be solved by the formal rules of algebra. We consider algebraic properties 
as well as more abstract properties such as realizing that the Star-System with α Coefficient (see [1, 2 and 3]) has a unique solution is 
called the star-solution or star-function. When we solve a linear Star-System with α Coefficient in five unknowns ⋆[a;b;c;d;e;α] = α, we 
will place the 5 Star-Vectors that are the solution (linearly independent) in the columns of a matrix, So what we’ve done is create the 
Star-Coefficient α⋆.

In this paper, we define (SLT) the Star-Laplace transform s-step of fairly regular function f : ℝ+ → ℂ by:

     We illustrate this criterion of (definition SLT) by providing some applications.

The contents of the paper are as follows:

     In the second section, we present some preliminary results and notations that will be useful in the sequel ([1 and 2]). 
     In the last section, we defined the Star Laplace Transform s-step (SLT) and certain of its Applications.
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Some basic definitions and notations 
Laplace Transform

Definition 1. Let ω = a + ib ∈ ℂ and f : ℝ+ → ℂ measurable such that the function t ↦ f (t) e−ωt belongs to soit dans L1 (ℝ+, dt). The Laplace 
transform of f noted L(f) is given by:

The function ω ↦ ωL(f)(ω) is called Carson transform of f. Th map f ↦ L(f) is named the Laplace transformation . If F = L(f), we write.

∀t ≥ 0, f(t) = L−1 (F)(t).

     One can prove that the Laplace transform L is injective (see page 9 in [8]), that is the reason why L−1 is well defined (for a precise 
formula of L−1, see page 10 in [8]).

To compute Laplace transforms, we need:

Where df : = f′(t)dt.

Laplace transform is linear: By linearity, we mean for all real numbers a, b,

L(af + bg) = aL(f) + bL(g)

Following pages, we introduce some notations and star-system with α coefficient defined in [1] and [2].

A star-system with α coefficient

Definition 2. Let a, b, c, d, e and α be real numbers, and let T1, T2, T3, T4, T5 be unknowns (also called variables or indeterminates). Then 
a system of the form

     The scalars a, b, c, d, e are called the coefficients of the unknowns, and α is called the constant “Chaf f” of the star-system in five un-
knowns. A vector (T1, T2, T3, T4, T5) in R5 is called a star-solution vector of this star-system if and only if ⋆[a,b,c,d,e;α] = α.

     The solution of a Star-system is the set of values for T1, T2, T3, T4 and T5 that satisfies five equations simultaneously.

A star-element

     A star-element (see: [1, 2, 4, 5, 6, 7]) is a term of the five-tuple (T1, T2, T3, T4, T5) solution of a star-system ⋆[a,b,c,d,e;α] = α, wher (T1, 
T2, T3, T4, T5) ∈ ℝ5.

https://primerascientific.com/psen


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Star-Laplace Transform S-Step 25

Figure 1: In addition to having the sum α in each line. 
Is called a star-system with coefficient α in five unknowns. 

We have also noted ⋆[a, b, c, d, e; α] = α.

Star-Coefficient

The star-Coefficient (see [1]) is also noted by α⋆ and is a solution of equation 

α = T1(α) + T2(α) + T3(α) + T4(α) + T5(α),

Where (T1, T2, T3, T4, T5) is solution of a star-system:

⋆[a, b, c, d, e; α] = α

On the other hand, the star-system with coefficient α (see [1]) can be written in matrix form T⋆ = M⋆ F⋆ where

M⋆ is called the star-Matrix of the star-system with α coefficient

⋆[f1, f2, f3, f4, f5; α] = α.

Set-Star

     The set-star is constructed from the solution set of linear star-system with coefficient α (⋆[a,b,c,d,e;α] = α). The Set-star will be noted 
by S⋆.

Star-System equivalent

     Equivalent Star-Systems (see [1]) are those systems having exactly same solution, i.e. two star-systems are equivalent if solution of 
one star-system is the solution of other, and vice-versa.

https://primerascientific.com/psen
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Star-Laplace Transform s-step

Consider the following star-system:

⋆[f(t + s),f(t + 2s),f(t + 3s),f(t + 4s),f(t + 5s);α] = α

Figure 2: In addition to having the sum α⋆
t,s in each line.

of five equations in five unknowns:

In a particular case if α = T2(α) + T2(α) + T3(α) + T4(α) + T5(α), we obtain:

In this case, we have

Behold, the Star-Laplace Transform s-step is born!

     To productively use the Star-Laplace Transform, we need to be able to transform functions from the time domain to the Star-Laplace 
domain.

Definition 3. We say that a function f : ℝ → ℂ is causal if for all t < 0, we have f (t) = 0.

Remark 1. The Heaviside function (or the unit step) defined as

https://primerascientific.com/psen


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Star-Laplace Transform S-Step 27

Allows to “manufacture” causal functions.

Definition 4. Let ω = a + ib ∈ ℂ, s ∈ ℝ and f : ℝ→ ℂ be causal and fairly function. The Star-Laplace transform s-step (SLT) of f noted is 
given by:

Let’s take a specific, simple, and important example.

Example 1. The Unit Step Function

Let H, the unit step function given by the relation (3.1). The unit step function is defined as

Figure 3: The graph of the unit step function H (t).

To find the Star-Laplace Transform s-step, we apply the definition (3.2). For all ω >0, we have

https://primerascientific.com/psen
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Where

We have

Then for all s ∈ ℝ, we obtain

Figure 4: The Star-Laplace Transform s-step of the unit step 
function, if (s= -0, 1), if (s = −0, 5), if (s = −1) and if s > 0.

Example 2. The Sine Function

Now, we consider the caual function fξ, ξ ∈ ℝ∗ given by:

https://primerascientific.com/psen
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Figure 5: The graph of the f2π (t).

As before, start with the definition of the Star-Laplace Transform s-step for all ω >0, we have

Where

Since

We obtain

Then for all s ∈ ℝ and ω > 0, we get

https://primerascientific.com/psen
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Figure 6: The graph of the Star-Laplace Transform s-step L⋆
sfπ(t).

If s = 1 and ξ = π, we get

If s = 1 and ξ = , we obtain

In general, we can deduce from the simple observation the following results

Example 3. The hyperbolic sine function 
Let ξ > 0 and gξ the caual function given by:

https://primerascientific.com/psen
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Figure 7: The graph of the g1(t) function.

For all ω > ξ, we have

Where

Since

We obtain

https://primerascientific.com/psen


 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Star-Laplace Transform S-Step 32

Then for all s ∈ ℝ and ω > 0, we get

Where

This results show a relationship between the Star-Laplace Transform s-step and Laplace Transform of the function sh (ξt)

If s < 0

If s ≥ 0

Figure 8: The graph of the Star-Laplace Transform s-step L⋆
s f1(t), if s < 0.

https://primerascientific.com/psen
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Figure 9: The graph of the Star-Laplace Transform s-step L⋆
s f1(t), if s > 0.
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