
PriMera Scientific Engineering 
Volume 1 Issue 1 September 2022 
https://doi.org/10.56831/PSEN-01-002

 PriMera Scientific Engineering                                                                                                                                                                   https://primerascientific.com/psen

Review Article

Developing Model of Bridge to Identification Eigen-Frequencies of 
Bridges Using the Theory of Continuous Systems

Citation: Triantafyllos Makari-
os., et al. “Developing Model 
of Bridge to Identification 
Eigen-Frequencies of Bridges 
Using the Theory of Continuous 
Systems". PriMera Scientific 
Engineering 1.1 (2022): 04-11.

Received: August 11, 2022 

Published: August 29, 2022

Copyright: © 2022 Triantafyl-
los Makarios., et al. This is an 
open-access article distributed 
under the Creative Commons 
Attribution License, which 
permits unrestricted use, distri-
bution, and reproduction in any 
medium, provided the original 
work is properly cited.

Triantafyllos Makarios1* and Vassilios Lekidis2 

1Department of Civil Engineering, Aristotle University of Thessaloniki, Greece 
2Hellenic Institute of Engineering Seismology and Earthquake Engineering, O.A.S.P., Greece 

*Corresponding Author: Triantafyllos Makarios, Professor, Department of Civil Engineering, Aris-

totle University of Thessaloniki, Greece.  

Abstract

     In the present article, an ideal equivalent three Degrees of Freedom (DoF) system of a one-
bay-bridge (that is supported on elastometallic bearings) that has distributed stiffness and mass 
along its length is given. From the naturally point of view, the bridge has infinity number of 
degrees of freedoms, but based on the free vibration study, using partial differential equation, a 
mathematical ideal Three-Degrees of Freedoms system is obtained, where its ideal mass matrix 
is analytically written at specific mass locations on the bridge. Thus, using this abovementioned 
three Degree of Freedom system, the first three fundamental mode-shapes of the real bridge are 
identifying. Moreover, we consider the 3x3 mass matrix, we can attempt an estimation of the 
future feasible damages on the bridge, if a known technique for the identification of dynamic 
characteristics applied. Furthermore, the way of installation of a local network of three uniaxial 
accelerometers must be compatible with the abovementioned Three-Degrees of Freedom. It is 
noting worthy, this technique can be applied on bridges, where the sense of concentrated mass 
is fully absent.

Abbreviations

DoF: Degree of Freedom.

Introduction

     The design of special structures such as large bridges, pipes etc., demands the use of reliable input data for the analysis, effective 
methods and realistic models of analysis. The modeling of the true behavior of a civil engineering structure is the first and the most 
difficult step in dynamic or seismic analysis. Among the important parameters to be defined are the mass distribution, the damping 
characteristics, the stiffness of the main load resisting system, the influence of secondary elements and interaction phenomena. The 
instrumentation of these structures contributes toward a better understanding of their dynamic performance, as well as a more ac-
curate and reliable prediction of the earthquake resistance of such large-scale structures. In experimental analysis, the classical ways 
to estimate the modal parameters of the whole structural system, as well as of its structural elements, is either to excite the structure 
artificially (using, e.g., vibrators, heavy vehicles) or to evaluate the recordings obtained from a weak or strong ground motion.
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     A considerable amount of research has been carried out in the field of experimental and analytical study of various structures -and 
especially bridges- in the last decade (Ewins & Griffin, 1981; Gates & Smith, 1984; Haibach, 1986; Imai et al, 1989; Karabinis, 1991; 
Hong & Yun, 1993; Johanson, 1993; Ewins, 1995; Lekidis et al, 2005).

     When a structure is excited dynamically, the response of the structure can be recorded, and from the response, the parameters de-
scribing the dynamic properties of the structure, the modal parameters, might be identified. This process, usually called experimental 
modal analysis, may be carried out in different ways depending on the size of the structure, the type of loading and the configuration 
of the instrumentation system.

     Investigations to assess the dynamic characteristics of bridges using analytical and experimental methods contribute also to main-
tain bridges over passing big national roads. By comparing the results of both approaches and adjusting the analytical model, a more 
realistic modelling of the bridge can be achieved. As a result, a more accurate and reliable prediction of the earthquake resistance of 
the bridge is possible.

     In this research a mathematic ideal three degrees of Freedom system that is equivalent to the modal behaviour of an infinity num-
ber of degrees of freedom of a bridge is given here. This ideal three DoF system can be used in installation of a local network of three 
uniaxial accelerometers on one bay bridge, that the sense of the concentrated masses is absent. This point is a basic obstacle that often 
appears during the instrumentation of such bridges or steel stairs (Makarios, 2020a; Manolis et al, 2015; Makarios et al, 2015 and 
2017) or wind energy power (Makarios and Baniotopoulos, 2014 and 2015) to identify the vibration mode shapes using records of 
response accelerations) due to ambient excitation (Makarios, 2012 and 2013).

Eigen-Modal Analysis of bridge without damping

     Using the Theory of Continuous Systems (Clough and Penzien, 1975; Copra, 1995; Makarios, 2020b), consider a straight beam that 
is loaded by an external continuous dynamic loading pz (x,t), with reference to a Cartesian three-dimensional reference system oxyz, 
(Figure 1). The bridge has a distributed mass m(x) per unit length, which in the special case of uniform distribution is taking as (in tons 
per meter tn/m). Moreover, according to Bernoulli Technical Bending Theory, the bridge has section flexural stiffness ΕΙy (x), where 
in the specific case of a uniform distribution of the stiffness it is taking as ΕΙy (x)=ΕΙy, where E is the material modulus of elasticity and 
Ιy is the section moment of inertia around y-axis (Figure 1). Furthermore, we are examining a such bridge that has constant value of 
distributed mass along its length and, also, has constant value of distributed section flexural stiffness ΕΙy. Due to the fact that the bridge 
mass is continuously distributed, this bridge has infinity number of degrees of freedom for vibration along the vertical oz-axis. To 
mathematically write the motion equation of this bridge, consider an infinitesimal part, at location x from the origin o, that has been 
isolated by two very nearest parallel sections. The infinitesimal length of this part is namely as the dx. On this infinitesimal length, 
we notice the flexural moment M(x,t), the shear force Q(x,t) with their differential increments, while the axial force Ν(x,t) is ignored, 
because it doesn’t affect the vertical beam vibration along z-axis. Moreover, noted the resulting force Pz (x,t) of the external dynamic 
loading. Therefore, we can write:

Pz (x,t)=pz (x,t) ∙ dx             (1)

     Where the resulting force Pz (x,t) acts at the total beam infinitesimal part.

     Moreover, according to D’Alembert Principle, the resulting inertia force Fa (x,t) is resulted, where:

     Here we agree that the time derivatives of the displacements are going to symbolize with full stops, while the spatial derivatives of 
the displacements are going to symbolize with accent. Furthermore, the damping and the second order differential of the bridge are 
ignored, so the force equilibrium on the infinitesimal part of the beam along z-axis is giving:
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Figure 1: One bay bridge with distributed section flexural stiffness and mass.

     Next, the moment equilibrium with reference to centre of weight (c.w.) of the infinitesimal part of the beam (see Figure 1) is giving:

     According to Euler-Bernoulli Technical Bending Theory (where the shear deformations are ignored) it is well-known that the following 
basic equation is written:

     Equations (4) and (5) are inserting into equation (3), thus the motion equation for the examined bridge is written:

Figure 2: One bay bridge subjected with the same vertical ground 
motion ug (t) on the two end-supports.
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     Equation (6) is a partial differential equation that describes the motion uz (x,t) of the bridge that is loaded with the external dynamic 
loading  pz (x,t). To arise a unique solution from Eq.(6), the support conditions must be used at the two bridge ends. It is worth noting 
that the classical case of a bridge with distributed mass and section flexural stiffness, under external vertical excitation (Figure 2) on 
the two supports is mathematically equivalent with the vibration that is described by equation (6). Indeed, in the case of the Figure 
(2), the total displacement of the beam at x-location is written:

     Where ug (t) is the displacement at the base that is the same for the two end-supports. But, it is known that the inertia forces of the 
bridge are depended by the total displacement , while the distributed dynamic loading is null, pz (x,t) = 0. So, the equation (3) is 
transformed into:

     Following, equations (4-5) are inserting into equation (8), thus we are given:

Figure 3: Modal analysis of Continuous bridge. The three first mode-shapes.

     If compare the two equations (6) and (9), we notice that the bridge vibration due to vertical motion of the two supports is mathe-
matically equivalent to the undamped vibration of the same bridge where the two supports are fixed and the bridge is loaded with the 
equivalent distributed dynamic loading peq (x,t):

     In the case of the bridge free vibration, we consider the first part of equation (9) that must be null:

     As proved in previous papers (Makarios, 2020a and 2002b) the solution of Eq.(11) arrive ateigen-frequency ωn is directly arise for 
each n-value.
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     Therefore, the vibration mode-shape of the examined bridge arises:

     The value of C1 is arbitrary, and we usually get it equal to unit. Thus, for each value of parameter n, a mode-shape with its eigen-fre-
quency is resulted. The fundamental (first) mode-shape results for n = 1, which shows a half sinusoidal wave, the second mode-shape 
shows a three sinusoidal wave, etc. (Figure 3). The order of the eigen-frequencies is ω1, ω2 = 4ω1,   ω3 = 9ω1.

The Ideal Equivalent Three Degrees of Freedom System

     At bridges where the fundamental mode shape does not activate above than 90% of the total bridge mass, we ask to consider the 
three first mode shapes. Thus, for this purpose, we must define an ideal equivalent three degrees of freedom beam, which is going 
to give the three mode-shapes of the examined beam. Therefore, which is the ideal three degrees of freedom system, where its three 
mode-shapes coincide with the real first three mode-shapes of the bridge with distributed mass and flexural stiffness?

     To answer the above-mentioned question, consider a weightless bridge with length L and constant section along its length, where 
carry three concentrated masses that each one has the same mass-value meq, located per distance 0.25L, between one to one, and each 
one mass has a vertical degree of freedom (Figure 4).

Figure 4: The equivalent Three-Degree of Freedom system.

     The bridge displacement vector u of the three degrees of freedom, as well as the diagonal bridge mass matrix m are written:

     Moreover, the bridge flexibility matrix f can be calculated using a suitable method (see in Figure 4), and the inverse matrix gives the 
stiffness matrix k of the three degrees of freedom bridge.
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     The equations of motion for the case of the free undamped vibration of the ideal bridge is given in matrix form:

 

     The eigen-problem is written:

     Where, the eigen-frequencies  and the three mode-shapes  are known by equation (13) and Figure 4. Thus, the unique unknown 
parameter is the mass meq. Therefore,

Where,

     The numerical solution of equation (20) gives three roots for parameter meq, where only the first root is acceptable, because the other 
two values rejected since do not have natural meaning (appear values greater from the total beam mass ). Thus, the only one acceptable 
root is given:

     Therefore, inserting the ideal equivalent mass  by equation (21) at three degrees of freedom system of Figure 4, the three eigen-fre-
quencies and mode-shapes coincide with the real values of the initial beam that has distributed mass and flexural stiffness.

     It is noting that in the case where we would like the beam-bridge to be divided at ten same beam-items with item length Li, then the 
equivalent mass of each item has to the real value, namely:

     If we consider other bridge models that we can see in Figure 5 and working similar according to all above mentioned mathematic analysis, 
the equivalent mass for each case of the bridge models is given into Figure 5.
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Figure 5: The equivalent mass for various model bridge cases.

Conclusions

     The present article has presented a mathematic ideal three degrees of freedom system that is equivalent to the modal behavior of the 
one bay bridge with distributed mass and flexural stiffness along its length. This ideal three degrees of freedom system can be used in 
instrumentation of a such bridge, which does not possess concentrated masses. In the framework of the identification of mode-shapes 
of one bay bridge, the equivalent mass by equation (24) permits to locate accelerometers per 0.25L (as it shown at Figure 4) and there 
measure the response acceleration histories, in order to calculate the real first three mode shapes of the bridge. Last but not least, in 
Figure 5 are given the values of the equivalent mass for other bridge models, such as the vibration of these models to be equal with 
the real, naturally vibration bridge that has distributed mass and flexural stiffness along its length. This method contributes to instru-
mentation improvement for bridges, so as to get the best recordings, from permanent mobile networks. The proposed methodology 
provides the maintenance departments of structural companies a useful tool for the continuous assessment of the structural condition 
of the bridges under their surveillance.
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